MPT Influence on the Rheological Behaviour of Self-Flow Refractory Castables

2008 ◽  
Vol 587-588 ◽  
pp. 133-137 ◽  
Author(s):  
Abílio P. Silva ◽  
Ana M. Segadães ◽  
Tessaleno C. Devezas

The success of a refractory castable is largely due to the quality of its properties and ease of application. Self-flow refractory castables (SFRC), with high flowability index (>130%), can be easily accommodated in a mould without the application of external energy, being ideal for the manufacture of monolithic linings. SFRC castables without cement require a matrix of very fine particles, which guarantees improved rheological behaviour and performs the role of the binder in the absence of the refractory cement. The presence of the aggregate (coarse particles) hinders the flowability index, but improves the castable mechanical strength and reduces firing shrinkage, and also contributes to the reduction of the castable costs. The control of the maximum paste thickness (MPT) allows the reduction of the coarse particles interference, minimizing the number of contact points among the grains and avoiding the formation of an aggregate skeleton that impairs the flowability of the mixture. In the present work, 100% alumina SFRCs without cement were produced with a fixed matrix of fine particles, whose particle size distribution was optimized using statistical techniques (mixtures design and triangular response surfaces). Different aggregate particle size distributions were used, with several MPT values, with the objective of evaluating which was the mean distance that maximized the flowability index, simultaneously ensuring good mechanical strength for the refractory castable. Ensuring a minimum surface area of 2.22m2/g, the mixtures reach the self-flow turning point with a minimum water content and the maximum flowability is obtained for an aggregate particle size distribution modulus of q=0.22, and consequently an optimized MPT value. SFRC with high mechanical strength (>60MPa) were obtained.

1993 ◽  
Vol 27 (10) ◽  
pp. 19-34 ◽  
Author(s):  
R. I. Mackie ◽  
R. Bai

The paper examines the importance of size distribution of the influent suspension on the performance of deep bed filters and its significance with regard to modelling. Experiments were carried out under a variety of conditions using suspensions which were identical in every respect apart from their size distribution. The results indicate that the presence of coarse particles does increase the removal of fine particles. Deposition of fine particles leads to a greater headloss than deposition of large particles. Changes in size distribution with time and depth play an important role in determining the behaviour of a filter, and models of both removal and headloss development must take account of this.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2190
Author(s):  
Fangfang Zhu ◽  
Yuchen Li ◽  
Jinhua Cheng

The particle size distribution characteristics of runoff sediments are vital for understanding the effect of the mechanism of soil erosion on slopes. The objective of this study was to investigate the particle-size distribution of sediments eroded from slopes covered by different litter coverage masses under artificial rainfall simulation. Litter was spread on the surface of a soil tank according to different biomasses (0 g·m−2, 100 g·m−2, 200 g·m−2 and 400 g·m−2). The mean weight diameter (MWD), fractal dimension (D) and enrichment ratio (ER) are characteristic parameters of sediment particle size. The MWD and D were more sensitive to soil erosion and had a significant negative correlation with the slope angle and rainfall intensity. The performance of the MWD on the slope (5°) was less than the MWD on the slope (10°). The relationship between eroded sediment distribution characteristic parameters and the litter coverage mass had a significant influence on the content of coarse particles. The content of fine particles accelerated, decreased and then stabilized, whereas coarse particles increased first and then stabilized. The litter diameter and surface area were the main parameters that affected the MWD and D. Under different rain intensities and slopes, the ER varied inconsistently with litter coverage mass. Coarse particles were eroded easily and selectively, and soil erosion had no sorting effect on fine particles. These findings support the quantitative study of the relationship between the amount of litter coverage mass and the particle size of soil sediments.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 278 ◽  
Author(s):  
Niloofar Ordou ◽  
Igor E. Agranovski

Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common Australian vegetation representatives. Smoke particles generated during the smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species, this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring data with one second time resolution for all nine species. Particles were separately characterised in two categories: fine particles with dominating diffusion properties measurable with diffusion-based instruments (Dp < 200 nm), and coarse particles with dominating inertia (Dp > 200 nm). It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species.


2001 ◽  
Vol 123 (2) ◽  
pp. 271-280 ◽  
Author(s):  
B. K. Gandhi ◽  
S. N. Singh ◽  
V. Seshadri

The performance of two centrifugal slurry pumps has been reported for three solid materials having different particle size distribution (PSD) in terms of head, capacity, and power characteristics. The results have shown that the values of head and efficiency ratios are not only dependent on solid concentration but are also affected by PSD of the solids and properties of the slurry. The addition of fine particles in the slurry of coarser material leads to reduction in the additional losses that occur in the pumps due to the presence of solids. It is also observed that with the increase in the pump size, the additional losses due to presence of solids reduce.


2001 ◽  
Vol 40 (Part 1, No. 5A) ◽  
pp. 3433-3434
Author(s):  
Nobuki Kawashima ◽  
Kazuya Takeda ◽  
Takeharu Etoh ◽  
Kousei Takehara ◽  
Haruya Kubo ◽  
...  

2006 ◽  
Vol 45 ◽  
pp. 2260-2265 ◽  
Author(s):  
Abílio P. Silva ◽  
Ana M. Segadães ◽  
Tessaleno C. Devezas

A self-flow refractory castable (SFRC) without cement requires a matrix of fine particles and a broad size distribution of coarse particles (aggregate). The matrix ensures the rheological behaviour and performs the binding role of the absent refractory cement. The presence of the aggregate coarse particles hinders the flowability index (FI), but improves the castable mechanical strength and reduces firing shrinkage. A new methodology of SFRC particle distribution design was developed, using response surface statistical modelling and commercial alumina powders (reactive and tabular). First, the composition of the fine matrix was optimised, seeking minimum water content and maximum IF. To this matrix, various aggregate distributions, combining six tabular alumina size fractions and with different Andreasen distribution modulus, q, between 0.18 to 0.28, were added, to identify the composition with maximum FI. The results obtained show that a minimum specific surface area (SSA) of 2.22m2/g is necessary to reach the self-flow turning point, after which the largest FI requires the maximisation of the aggregate maximum paste thickness (MPT), corresponding to a distribution with q=0.22. The optimised castable composition presents high mechanical strength (>60MPa) and low shrinkage.


2020 ◽  
Vol 57 (11) ◽  
pp. 1684-1694
Author(s):  
Shijin Li ◽  
Adrian R. Russell ◽  
David Muir Wood

Internal erosion (suffusion) is caused by water seeping through the matrix of coarse soil and progressively transporting out fine particles. The mechanical strength and stress–strain behavior of soils within water-retaining structures may be affected by internal erosion. Some researchers have set out to conduct triaxial erosion tests to study the mechanical consequences of erosion. Prior to conducting a triaxial test they subject a soil sample, which has an initially homogeneous particle-size distribution and density throughout, to erosion by causing water to enter one end of a sample and wash fine particles out the other. The erosion and movement of particles causes heterogeneous particle-size distributions to develop along the sample length. In this paper, a new soil sample formation procedure is presented that results in homogeneous particle-size distributions along the length of an eroded sample. Triaxial tests are conducted on homogeneous samples formed using the new procedure as well as heterogeneous samples created by the more commonly used approach. Results show that samples with homogeneous post-erosion particle-size distributions exhibit slightly higher peak deviator stresses than those that were heterogeneous. The results highlight the importance of ensuring homogeneity of post-erosion particle-size distributions when assessing the mechanical consequences of erosion. Forming samples using the new procedure enables the sample’s response to triaxial loading to be interpreted against a measure of its initially homogenous state.


Sign in / Sign up

Export Citation Format

Share Document