Hydrogen Detection in Buried Layers of Thermal Barrier Coatings

2008 ◽  
Vol 595-598 ◽  
pp. 177-184 ◽  
Author(s):  
Mario Rudolphi ◽  
Daniel Renusch ◽  
Hans Eberhard Zschau ◽  
Michael Schütze

Thermal barrier coatings used in airplane engines or land-based gas turbines can show catastrophic failure (i. e. spallation) typically during cooldown due to thermal expansion mismatch stresses. However, it is also often noted that spallation occurs minutes, hours, or even days after the sample is cold. This type of delayed failure, called “desk top spallation” is, up to now, not fully understood and therefore a field of great interest. Because desk top failure occurs in ambient air, the working hypothesis is that water vapor from the office environment plays a role. Consequently, a number of experiments have been designed to verify this hypothesis. The experiments include more traditional approaches like acoustic emission measurements during cyclic oxidation, but also innovative new approaches like acoustic emission during water drop testing, and hydrogen detection at the interface to the thermally grown oxide using ion beam techniques.

2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350035 ◽  
Author(s):  
J. J. HUA ◽  
W. WU ◽  
C. C. LIN ◽  
Y. ZENG ◽  
H. WANG ◽  
...  

Thermal barrier coatings (TBCs), used in gas turbine blades, are exposed to oxidation and thermal fatigue conditions. The characterization of TBCs was often performed in laboratory experiments, therefore, its detail failure mechanism is not quite obvious. For better understanding of the phenomenon, it is recommended to observe it under the condition simulating the real service conditions of gas turbines. In the present work, ZrO 2 coatings were prepared by air plasma spraying (APS). Scanning electron microscope (SEM), equipped with a heating system, was used to study the in situ microstructure change of TBCs at service temperature at which the aircraft is operated. The bond coat (BC) layer's thickening process and thermally grown oxide (TGO) generation along with the cracks growth are revealed. Moreover, the influence of the service temperature and holding time on the failure mechanism of TBCs is discussed. The crack healing produced during the coating re-melting reaction is observed, and it is the key factor to increase the thermal conductivity of the coating.


2021 ◽  
Vol 5 (1) ◽  
pp. 16
Author(s):  
David Jeronimo Busquets ◽  
Carlos Bloem ◽  
Amparo Borrell ◽  
Maria Dolores Salvador

The improvement of high temperature materials with lower heat transfer coefficients lead to the development of thermal barrier coatings (TBCs). One of the most widely used materials for thermal barrier coatings is Y2O3 stabilized ZrO2 (Y-TZP) because of its excellent shock resistance, low thermal conductivity, and relatively high coefficient of thermal expansion. The aim of this work is to study the TBCs mechanical behavior with the addition of SiC into the suspension of Y-TZP/Al2O3 by acoustic emission (AE). Additionally, a microstructural analysis and a finite elements model were carried out in order to compare results. The coatings were made by suspension plasma spray (SPS) on metal plates of 70 × 12 × 2 mm3. An intermetallic was deposited as a bond coating, followed by a coating of Y-TZP/Al2O3 with and without 15 wt.% SiC, with thicknesses between 87 and 161 μm. The AE becomes a fundamental tool in the study of the mechanical behavior of thermal barriers. The use of wavelet transforms streamlines the study and analysis of recorded sound spectra. The crack generation arises at very low stress levels.


2007 ◽  
Vol 14 (05) ◽  
pp. 935-943 ◽  
Author(s):  
L. YANG ◽  
Y. C. ZHOU ◽  
W. G. MAO ◽  
Q. X. LIU

In this paper, the impedance spectroscopy technique was employed to examine nondestructively the isothermal oxidation of air plasma sprayed (APS) thermal barrier coatings (TBCs) in air at 800°C. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also used to characterize the microstructure evolution of TBCs. After oxidation, the thermally grown oxide (TGO), which was mainly composed of alumina as confirmed by EDX, formed at the upper ceramic coat/bond coat interface, the lower bond coat/substrate interface, and the bond coat. Impedance diagrams obtained from impedance measurements at room temperature were analyzed according to the equivalent circuit model proposed for the TBCs. Various observed electrical responses relating to the growth of oxides and the sintering of YSZ were explained by simulating the impedance spectra of the TBCs.


2008 ◽  
Vol 373-374 ◽  
pp. 300-303 ◽  
Author(s):  
C. Liu ◽  
X.G. Han ◽  
X.P. Zhu ◽  
M.K. Lei

Thermal barrier coatings (TBCs) fabricated by electron-beam physical-vapor deposition (EB-PVD) were irradiated by high-intensity pulsed ion beam (HIPIB) at an ion current density of 100 A/cm2 with a shot number of 1-10. Microstructural features of the irradiated EB-PVD TBCs were characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. All the HIPIB-irradiated EB-PVD TBC surfaces present smooth and densified features. The originated intercolumnar channels growing out to the top-coat surface and nanometer-scale gaps inside each single column were sealed after the remelting of TBC surface induced by HIPIB, resulting in formation of a continuous remelted layer about 1-2 μm in thickness. The dense remelted layer can work as a barrier against the heat-flow and corrosive gases, and gives the possibility of improving thermal conductivity and oxidation resistance of the HIPIB irradiated EB-PVD TBC.


2021 ◽  
Vol 3 (1) ◽  
pp. 63-67
Author(s):  
Esmaeil Poursaeidi ◽  
◽  
Farzam Montakhabi ◽  
Javad Rahimi ◽  
◽  
...  

The constant need to use gas turbines has led to the need to increase turbines' inlet temperature. When the temperature reaches a level higher than the material's tolerance, phenomena such as creep, changes in mechanical properties, oxidation, and corrosion occur at high speeds, which affects the life of the metal material. Nowadays, operation at high temperatures is made possible by proceedings such as cooling and thermal insulation by thermal barrier coatings (TBCs). The method of applying thermal barrier coatings on the turbine blade creates residual stresses. In this study, residual stresses in thermal barrier coatings applied by APS and HVOF methods are compared by Tsui–Clyne analytical model and XRD test. The analytical model results are in good agreement with the experimental results (between 2 and 8% error), and the HVOF spray method creates less residual stress than APS. In the end, an optimal thickness for the coating is calculated to minimize residual stress at the interface between the bond coat and top coat layers.


Author(s):  
J. Wigren ◽  
J.-F. de Vries ◽  
D. Greving

Abstract Thermal barrier coatings are used in the aerospace industry for thermal insulation in hot sections of gas turbines. Improved coating reliability is a common goal among jet engine designers. In-service failures, such as coating cracking and spallation, result in decreased engine performance and costly maintenance time. A research program was conducted to evaluate residual stresses, microstructure, and thermal shock life of thermal barrier coatings produced from different powder types and spray parameters. Sixteen coatings were ranked according to their performance relative to the other coatings in each evaluation category. Comparisons of residual stresses, powder morphology, and microstructure to thermal shock life indicate a strong correlation to thermal barrier coating performance. Results from these evaluations will aid in the selection of an optimum thermal barrier coating system for turbine engine applications.


Author(s):  
I. G. Wright ◽  
B. A. Pint

Thermal barrier coatings are intended to work in conjunction with internal cooling schemes to reduce the metal temperature of critical hot gas path components in gas turbine engines. The thermal resistance is typically provided by a 100-250 μm thick layer of ceramic (most usually zirconia stabilized with an addition of 7–8 wt% of yttria), and this is deposited on to an approximately 50 μ thick, metallic bond coating that is intended to anchor the ceramic to the metallic surface, to provide some degree of mechanical compliance, and to act as a reservoir of protective scale-forming elements (Al) to protect the underlying superalloy from high-temperature corrosion. A feature of importance to the durability of thermal barrier coatings is the early establishment of a continuous, protective oxide layer (preferably α-alumina) at the bond coating—ceramic interface. Because zirconia is permeable to oxygen, this oxide layer continues to grow during service. Some superalloys are inherently resistant to high-temperature oxidation, so a separate bond coating may not be needed in those cases. Thermal barrier coatings have been in service in aeroengines for a number of years, and the use of this technology for increasing the durability and/or efficiency of industrial gas turbines is currently of significant interest. The data presented were taken from an investigation of routes to optimize bond coating performance, and the focus of the paper is on the influences of reactive elements and Pt on the oxidation behaviour of NiAl-based alloys determined in studies using cast versions of bond coating compositions.


Sign in / Sign up

Export Citation Format

Share Document