Study of the Effect of Microstructure on the Anisotropy of AZ31 Magnesium Alloy Thin Sheet

2009 ◽  
Vol 610-613 ◽  
pp. 742-745 ◽  
Author(s):  
Qun Jiao Wang ◽  
Yi Bin Zhang ◽  
Ya Fei Sun ◽  
Jin Geng Chen ◽  
Jian Zhong Cui

Stronger (0001) basal plane textures mainly include two types: and in AZ31 magnesium alloy thin sheet were formed after hot-rolling. The texture types of hot-rolled AZ31 magnesium alloy thin sheet after annealing at 523K and 673K respectively were as same as that of hot-rolled thin sheet without annealing, but texture intensities became weaker, especially after annealing at 673K. The strong texture of hot-rolled thin sheet caused anisotropy of mechanical properties (tensile strength b, yield strength s and elongation ) significantly , and the anisotropy reduced with the decrease of texture intensity after annealing. Besides texture, the grain shape also effects anisotropy of mechanical properties. The anisotropy becames more significantly with the increase of relative difference of grain diameter between transverse and longitudinal directions.

2007 ◽  
pp. 255-258
Author(s):  
Xin Sheng Huang ◽  
Kazutaka Suzuki ◽  
Akira Watazu ◽  
Ichinori Shigematsu ◽  
Naobumi Saito

2009 ◽  
Vol 475 (1-2) ◽  
pp. 126-130 ◽  
Author(s):  
S.M. Fatemi-Varzaneh ◽  
A. Zarei-Hanzaki ◽  
M. Haghshenas

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 644
Author(s):  
Wenyan Zhang ◽  
Hua Zhang ◽  
Lifei Wang ◽  
Jianfeng Fan ◽  
Xia Li ◽  
...  

AZ31 magnesium alloy sheets were prepared by low-speed extrusion at different temperatures, i.e., 350 °C, 400 °C, and 450 °C. The microstructure evolution and mechanical properties of extruded AZ31 magnesium alloy sheets were studied. Results indicate that the low-speed extrusion obviously improved the microstructure of magnesium alloys. As the extrusion temperature decreased, the grain size for the produced AZ31 magnesium alloy sheets decreased, and the (0001) basal texture intensity of the extruded sheets increased. The yield strength and tensile strength of the extruded sheets greatly increased as the extrusion temperature decreased. The AZ31 magnesium alloy sheet prepared by low-speed extrusion at 350 °C exhibited the finest grain size and the best mechanical properties. The average grain size, yield strength, tensile strength, and elongation of the extruded sheet prepared by low-speed extrusion at 350 °C were ~2.7 μm, ~226 MPa, ~353 MPa, and ~16.7%, respectively. These properties indicate the excellent mechanical properties of the extruded sheets prepared by low-speed extrusion. The grain refinement effect and mechanical properties of the extruded sheets produced in this work were obviously superior to those of magnesium alloys prepared using traditional extrusion or rolling methods reported in other related studies.


2013 ◽  
Vol 710 ◽  
pp. 21-24 ◽  
Author(s):  
Jian Gang Lv ◽  
Gao Feng Quan ◽  
Rui Chun Li ◽  
Chun Yuan Shi ◽  
Ying Bo Zhang ◽  
...  

According to the profile section of transport equipment, the wide and hollow AZ31 magnesium alloy profiles was self-designed. Extrusion molding performance of the profiles, the law of microstructure and mechanical properties were studied when billets pretreatment and extrusion temperature were changed. The conclusions are as follows: (1) The grains of AZ31 profiles extruded by pre-extrusion billet are smaller and the strength is better, its maximum tensile strength is 280MPa. (2) Other processes being equal, the grains of AZ31 profiles are smaller and strength is higher, but the plastic is bad, when the extrusion temperature is 300°C. However, both strength and ductility of AZ31 profiles are better, when the extrusion temperature is 350°C. (3) Wide and Hollow AZ31 profiles perform significant heterogeneity and anisotropic characteristics on mechanical properties.


2007 ◽  
Vol 546-549 ◽  
pp. 379-382
Author(s):  
Guang Jie Huang ◽  
Ling Yun Wang ◽  
Guang Sheng Huang ◽  
Fu Sheng Pan ◽  
Qing Liu

Microstructural evolution and mechanical properties of the AZ31 magnesium alloy during rolling and annealing process were investigated. The sheet samples were prepared after different stages of the hot rolling, cold rolling and annealing processes. The hot rolling temperature was between 300-450C and the final thickness of the cold rolled sheets was 1.5mm. The cold rolled sheets were annealed at different annealing temperature (260-350C) for different time (10~120min). Tensile test was performed to investigate the mechanical properties of the samples obtained from different stages. With aid of the optical microscopy, scanning electron microscopy (SEM) techniques, the microstructure of the samples were characterized and the results were related to the mechanical properties. It was found the hot-rolled sheets exhibit higher ductility comparing with the cold-rolled sheets. The microstructural investigation showed that the microstructure of the hot-rolled samples was dominated by recrystallized equiaxed grains while the microstructure of the cold-rolled samples dominated by deformation twining. By applying annealing on the cold-rolled sheets, fine recrystallization grains were obtained and ductility of the samples was improved. The effects of the grain size and twining on mechanical properties of the AZ31 sheet were further discussed based on the experimental results.


2011 ◽  
Vol 528 (4-5) ◽  
pp. 2049-2055 ◽  
Author(s):  
Loreleï Commin ◽  
Myriam Dumont ◽  
René Rotinat ◽  
Fabrice Pierron ◽  
Jean-Eric Masse ◽  
...  

2011 ◽  
Vol 686 ◽  
pp. 53-56 ◽  
Author(s):  
Jie Li ◽  
Xian Quan Jiang

The microstructure and mechanical properties of AZ31 magnesium alloys were investigated in this paper. AZ31 magnesium alloys were cryogenically treated at -196°C for 1, 5 and 24 hours, respectively. The results showed the grains of AZ31 were initially refined and grew up with the increase of cryogenic time, the second phase decreased gradually, and the rigidity and tensile strength decreased drastically and then increased. As a result, AZ31 magnesium alloys with 1 hour cryogenic treatment were able to obtain the optimal combination properties.


Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


Sign in / Sign up

Export Citation Format

Share Document