Effect of Nano-Sized Metal Colloids on Color Change of Photosensitive Glass by Using X-Ray Irradiation

2009 ◽  
Vol 620-622 ◽  
pp. 509-512
Author(s):  
Yong Kap Park ◽  
In Churl Cho ◽  
Y. Choi

X-ray irradiation was applied to control the size of metal colloids in a silicate glass to make a high precise photosensitive glass containing K2O, Na2O, ZnO BaO, 0.01-0.05wt.% Au metal as sensitizer, <1.2wt.% Sb2O3 and SnO2 as thermal reducer. Colorimetry showed that X-ray irradiation effectively works to make the color of red system. Transmission electron microscopy revealed that the metal colloids were oxided and had uniform and spherical shape of 10-20 nm. Au colloid made various colors like pink after heating at 400°C, red at 500°C and dark-red at 600°C. Ag colloid made them like yellow-green at 400°C, yellow at 500°C and dark-brown, respectively.

2009 ◽  
Vol 1242 ◽  
Author(s):  
R. Esparza ◽  
A. Aguilar ◽  
A. Escobedo-Morales ◽  
C. Patiño-Carachure ◽  
U. Pal ◽  
...  

ABSTRACTZinc peroxide (ZnO2) nanocrystals were directly produced by hydrothermal process. The nanocrystals were synthesized using zinc acetate as precursor and hydrogen peroxide as oxidant agent. The ZnO2 powders were characterized by X-ray powder diffraction and transmission electron microscopy. The results of transmission electron microscopy indicated that the ZnO2powders consisted of nanocrystals with diameters below to 20 nm and a faceted morphology. High resolution electron microscopy observations have been used in order to the structural characterization. ZnO2 nanocrystals exhibit a well-crystallized structure.


2012 ◽  
Vol 424-425 ◽  
pp. 949-952
Author(s):  
Yu Jiang Wang ◽  
Lin Lin Yang ◽  
Yong Gang Wang

SrTiO3 nanoparticles were successfully synthesized by a sonochemical method at room temperature. The as-prepared powders were characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM), and exhibited a pure phase SrTiO3 with a perovskite structure about 20nm in size with uniform and nearly spherical shape. It is found that the size of the obtained nanoparticles increased with prolonging the ultrasonic time.


1988 ◽  
Vol 133 ◽  
Author(s):  
Donald S. Shih ◽  
Gary K. Scarr ◽  
James C. Chesnutt

ABSTRACTMicrostructural development in helium gas atomized Ti-50A1-2Nb (at.%) powder has been characterized using x-ray diffractometry and transmission electron microscopy. The structure of the as-atomized powder was a mixture of two phases: an ordered fct (L10)γ TiAl phase and an hcp α Ti phase containing fine (≈ 10–20 nm) D019 α2 domains. Large powder (≈ 250 μm) contained ≈ 14 volume % hcp phase, while fine powder (≈37 μm) contained ≈ 72 volume % hcp phase. However, this α+α2 constituent was metastable and transformed to the γ phase during annealing.


2010 ◽  
Vol 92 ◽  
pp. 125-130
Author(s):  
Ming Guo Ma ◽  
Jie Fang Zhu ◽  
Run Cang Sun

Luminescent wollastonite-CePO4 nanocomposites have been successfully synthesized using Ca(NO3)2•4H2O, Na2SiO3•9H2O, and CePO4 by hydrothermal method at 200 oC for 24 h. The precursor nanorods with diameters about 20 nm and lengths several micrometers were obtained by hydrothermal treatment, and after calcination at 600 oC for 3h, the precursor nanorods transformed to wollastonite-CePO4 nanocomposites. Considering the experiment result, a possible growth of the precursor nanorods via the rolling mechanism was also proposed. This is the first report about the synthesis of luminescent wollastonite-CePO4 nanocomposites. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), and photoluminescence (PL).


2004 ◽  
Vol 19 (5) ◽  
pp. 1504-1508 ◽  
Author(s):  
Bin-Siang Tsai ◽  
Yen-Hwei Chang ◽  
Yu-Chung Chen

Nano-grained phosphors of Eu3+-doped MgGa2O4 crystallites were prepared by sol-gel technique. The characterization and optical properties of luminescent MgGa2O4:Eu3+ powders have been investigated. The dried sol-gel powders were calcined in air at different temperature from 600 to 1000 °C for 5 h. The x-ray diffraction profiles showed that the MgGa2O4:Eu3+ powders began to crystallize around 600 °C and formed stable MgGa2O4 phase in the temperature range of 600–900 °C. The transmission electron microscopy morphology observations revealed that the fired powders exhibit small grain size less than 20 nm. In the PL studies, under ultraviolet (394 nm) excitation, the calcined powders emitted bright red luminescence (615 nm, 5D0→7F2), and the powders fired at 900 °C were found to have the maximum photoluminescence intensity. The quenching concentration of Eu3+ in MgGa2O4 crystallites was also indicated to be about 5∼6 mol%.


1998 ◽  
Vol 523 ◽  
Author(s):  
A. F. Myers ◽  
E. B. Steel ◽  
L. M. Struck ◽  
H. I. Liu ◽  
J. A. Burns

AbstractTitanium silicide films grown on silicon were analyzed by transmission electron microscopy (TEM), electron diffraction, scanning transmission electron microscopy (STEM), and energy dispersive x-ray spectroscopy. The films were prepared by sequential rapid thermal annealing (RTA) at 675 °C and 850 °C of 16-nm-thick sputtered Ti on Si (001) wafers. In some cases, a 20-nm-thick TiN capping layer was deposited on the Ti film before the RTA procedure and was removed after annealing. TEM and STEM analyses showed that the silicide films were less than 0.1 μm thick; the capped film was more uniform, ranging in thickness from ∼ 25 – 45 nm, while the uncapped film ranged in thickness from ∼ 15 – 75 nm. Electron diffraction was used to determine that the capped film contained C54-TiSi2, C49-TiSi2, Ti5Si3, and possibly TiSi, and that the uncapped film contained C49-TiSi2, TiSi, Ti5Si3, unreacted Ti, and possibly C54-TiSi2.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 700
Author(s):  
Suhailah S. Al-Jameel ◽  
Munirah A. Almessiere ◽  
Firdos A. Khan ◽  
Nedaa Taskhandi ◽  
Yassine Slimani ◽  
...  

There is enormous interest in combining two or more nanoparticles for various biomedical applications, especially in anti-cancer agent delivery. In this study, the microsphere nanoparticles were prepared (MSNPs) and their impact on cancer cells was examined. The MSNPs were prepared by using the hydrothermal method where strontium (Sr), barium (Ba), dysprosium (Dy), samarium (Sm), and iron oxide (Fe8−2xO19) were combined, and dysprosium (Dy) and samarium (Sm) was substituted with strontium (Sr) and barium (Ba), preparing Sr0.5Ba0.5DyxSmxFe8−2xO19 (0.00 ≤ x ≤ 1.0) MSNPs. The microspheres were characterized by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques. The diffraction pattern of nanohexaferrites (NHFs) reflected the signature peaks of the hexagonal structure. The XRD revealed a pure hexagonal structure without any undesired phase, which indicated the homogeneity of the products. The crystal size of the nanoparticles were in the range of 22 to 36 nm by Scherrer’s equation. The SEM of MSNPs showed a semi-spherical shape with a high degree of aggregation. TEM and HR-TEM images of MSNPs verified the spherical shape morphology and structure that approved an M-type hexaferrite formation. The anti-cancer activity was examined on HCT-116 (human colorectal carcinoma) and HeLa (cervical cancer cells) using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and post-48 h treatment of MSNPs caused a dose-dependent inhibition of HCT-116 and HeLa cell proliferation and growth. Conversely, no significant cytotoxic effect was observed on HEK-293 cells. The treatments of MSNPs also induced cancer cells DNA disintegration, as revealed by 4′,6-diamidino-2-phenylindole (DAPI) staining. Finally, these findings suggest that synthesized MSNPs possess potential inhibitory actions on cancerous cells without harming normal cells.


Author(s):  
А.А. Ломов ◽  
А.В. Мяконьких ◽  
Ю.М. Чесноков ◽  
В.В. Денисов ◽  
А.Н. Кириченко ◽  
...  

AbstractThe possibility of nanocrystal formation in silicon layers subjected to plasma-immersion helium-ion implantation at an energy of 5 keV has been proved for the first time. The effect of the implantation dose on the microstructure of the layers has been studied by X-ray reflectometry, transmission electron microscopy and Raman scattering. It has been established that the formation of silicon nanocrystals with dimensions of 10–20 nm is accompanied by a pronounced dependence on the ion flux and occurs at a dose of 5 × 10^17 cm^–2 with subsequent annealing at 700–800°C. The excessive dose has been shown to cause the destruction of the upper protective sublayer and the degradation of the optical properties of nanocrystals.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Phan Ha Nu Diem ◽  
Doan Thi Thu Thao ◽  
Dang Van Phu ◽  
Nguyen Ngoc Duy ◽  
Hoang Thi Dong Quy ◽  
...  

Gold nanoparticles (AuNPs) in spherical shape with diameter of 6–35 nm stabilized by dextran were synthesized by γ-irradiation method. The AuNPs were characterized by UV-Vis spectroscopy and transmission electron microscopy. The influence of pH, Au3+ concentration, and dextran concentration on the size of AuNPs was investigated. Results indicated that the smallest AuNPs size (6 nm) and the largest AuNPs size (35 nm) were obtained for pH of 1 mM Au3+/1% dextran solution of 5.5 and 7.5, respectively. The smaller Au3+ concentration favored smaller size and conversely the smaller dextran concentration favored bigger size of AuNPs. AuNPs powders were prepared by spay drying, coagulation, and centrifugation and their sizes were also evaluated. The purity of prepared AuNPs powders was also examined by energy dispersive X-ray (EDX) analysis. Thus, the as-prepared AuNPs stabilized by biocompatible dextran in solution and/or in powder form can be potentially applied in biomedicine and pharmaceutics.


2015 ◽  
Vol 6 (1) ◽  
pp. 119 ◽  
Author(s):  
O. C. Vergara Estupiñán ◽  
J. A. Gómez Cuaspud

ResumenEste trabajo investigó la síntesis y la caracterización de un material tipo perovskita basado en el sistema La0,95Sr0,05CrO3, mediante el método de polimerización-combustión, utilizando ácido cítrico para la conformación de especies intermedias de coordinación tipo citrato, que evolucionan en función de la temperatura hasta la consolidación de la fase cristalina buscada. La caracterización del precursor metalorgánico se realizó mediante análisis térmicos (TGA-DTA), con el fin de establecer una temperatura ideal de consolidación de la fase cristalina buscada. Los análisis de difracción de rayos X (XRD), microscopía electrónica de transmisión (TEM), fluorescencia de rayos X por microsonda (EDX) y análisis de área superficial (BET) se realizaron sobre el material cerámico calcinado, y revelaron la obtención de una estructura cristalina ortorrómbica nanoestructurada con grupo espacial Pnma (62), con un tamaño promedio de cristalito de 20 nm. Los análisis derivados de la microscopía electrónica de transmisión revelaron que el material está conformado por agregados del orden nanométrico con una serie de propiedades texturales y morfológicas específicas para eventual aplicación a nivel catalítico, lo que guarda una estrecha relación con los datos derivados de la medida del área superficial, obtenidos por la técnica BET. Finalmente, la valoración de la composición mediante fluorescencia de rayos X permitió determinar que el control en la composición es uno de los parámetros claves en este proceso de síntesis, lo cual permite validar el método utilizado y posibilita el empleo de los materiales obtenidos en potenciales aplicaciones tecnológicas. AbstractThis work investigated the synthesis and characterization of a perovskite material based on theLa0.95Sr0.05CrO3 system, by a wet chemical route that involves the combustion-polymerization method, using citric acid as complexing agent, in order to obtain intermediate coordination species, which evolve depending on the temperature until the desired consolidation crystalline phase is obtained. The metal-organic precursor characterization was performed by thermal analyses (TGA-DTA), in order to evaluate an ideal consolidation temperature of the searched crystalline phase. The analysis by the X-ray diraction (XRD), the transmission electron microscopy (TEM), the X-ray fluorescence microprobe (EDX) and the surface area (BET), were performed over the calcined ceramic material and revealed the obtention of a nanostructured orthorhombic crystal structure with a Pnma (62) space group, and a 20 nm crystallite average size. The analysis derived from the transmission electron microscopy, revealed that the material is composed of aggregates of nanometric range with a series of textural and specific morphological properties for an eventual application at the catalytic level, which is correlated with the data derived from the measurement of the surface area obtained by the BET technique. Finally, the composition by X-ray fluorescence assessment revealed that stoichiometric control in composition is one of the key parameters in this synthesis process, which allows to validate the used method and enables to employ the obtained materials in potential technological applications.


Sign in / Sign up

Export Citation Format

Share Document