Effect of Cutting Speed on Chip Fracture Strain in High Speed Cutting

2009 ◽  
Vol 626-627 ◽  
pp. 65-70
Author(s):  
Hui Ping Zhang ◽  
X.P. Ji ◽  
Jue Wang ◽  
Er Liang Liu

This paper deals with the effect of cutting speed on chip fracture strain in high speed cutting. Firstly, a chip-fracture-strain-measuring device is designed and made according to chip breaking principle. Secondly, experiments are performed by the chip-fracture-strain-measuring device. The experiment results show that chip fracture strain increases first and then diminishes as cutting speed increasing in high speed cutting while feedrate and depth of cut are constant values. Lastly, the effect of cutting speed on chip fracture strain is theoretically analysed from three main factors which affect chip fracture strain. The study above lays a theory and basis for future investigation of chip fracture strain of the other metals and for future investigation the mechanism and chip breaking forecast system of 3-D groove insert in high speed cutting.

2008 ◽  
Vol 375-376 ◽  
pp. 206-210
Author(s):  
Hui Ping Zhang ◽  
Zhen Jia Li ◽  
Er Liang Liu ◽  
Guo Liang Wei

This paper deals with chip breaking behaviour of 3-D complex groove inserts in machining carbon constructional steel-45 steel at high cutting speeds .Cutting experiments were performed at eleven different cutting speeds. Firstly, the results showed that by increasing cutting speeds, the changes of the critical feedrate and chip breaking scopes at high cutting speeds machining with 3-D complex groove inserts were nonlinear and not monotonous function relations. Then, mathematic models were built. Secondly, the results showed that the critical depth of cut was a constant value at various cutting speeds. And, the curves of the critical depth of cut were perpendicular lines. For this purpose, the critical depth of cut mathematic model has been built. The study above lays a theory and basis for future investigation of the mechanism of chip breaking with 3-D groove insert in high speed machining.


Author(s):  
Zengqiang Wang ◽  
Zhanfei Zhang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Kunyang Lin ◽  
...  

Abstract High speed cutting (HSC) technology has the characteristics of high material removal rates and high machining precision. In order to study the relationships between chip morphology and machining surface characteristic in high speed cutting of superalloy Inconel718. High-speed orthogonal cutting experiment are carried out by used a high speed cutting device based on split Hopkinson pressure bar (SHPB). The specimen surfaces and collected chips were then detected with optical microscope, scanning electron microscope and three-dimensional surface profile measuring instrument. The results show that within the experimental parameters (cutting speed from 8–16m/s, depth of cut 0.1–0.5mm), the obtained chips are sawtooth chips and periodic micro-ripple appear on the machined surface. With the cutting speed increases, machining surface roughness is decreases from 1.4 to 0.99μm, and the amplitude of periodic ripples also decreases. With the cutting depth increases, the machining surface roughness increases from 0.96 to 5.12μm and surface topography becomes worse. With the increase of cutting speed and depth of cut, the chips are transform from continues sawtooth to sawtooth fragment. By comparing the frequency of surface ripples and sawtooth chips, it is found that they are highly consistent.


Author(s):  
Zhanfei Zhang ◽  
Zengqiang Wang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Yifeng Xiong

High-speed cutting technology has the characteristics of high material removal rate and excellent processing quality. To investigate the surface quality of high-speed cutting Ti6Al4V alloy, the orthogonal cutting experiment is the cutting device based on improved Split-Hopkinson pressure bar carried out with a cutting speed of about 7–16 m/s. Surface roughness, residual stress and three-dimensional surface topography are examined to characterize the surface quality. And the chip geometry parameters are measured to analyze the formation mechanism of surface topography. The result shows that cutting force and surface roughness increase rapidly with the increase in depth of cut. In the meantime, the periodic microwaves appeared on the machined surface, and their amplitudes increase with the increase in depth of cut. However, surface roughness, residual stress and microwave amplitude all decrease with the increase in cutting speed. Moreover, it is found that the evolution trend of chip thickness and surface roughness with cutting parameters is very similar. Therefore, it can be inferred that there is a strong relationship between surface topography and chip morphology.


2021 ◽  
Vol 113 (9-10) ◽  
pp. 2883-2894
Author(s):  
Qihang Shi ◽  
Yongzhi Pan ◽  
Xiuli Fu ◽  
Bin Zhou ◽  
Zewen Zhang

2014 ◽  
Vol 621 ◽  
pp. 3-8 ◽  
Author(s):  
Ai Dong He ◽  
Bang Yan Ye ◽  
Zi Yuan Wang

Cryogenic MQL is a kind of green machining technology of the combination of cryogenic air and minimal quantity lubrication (MQL). The aim of this research is to determine if the cryogenic MQL technique in turning with Cutting tool with internal cooling structure gives some advantages in terms of tool life, surface roughness and cutting chip breaking. This paper reports the results obtained from turning tests, at one feed rates (0.12mm/r) and one depth of cut (0.4mm) and different cutting speeds (43m/min, 108m/min, 217m/min), and the results obtained show that using cryogenic MQL had some advantages in terms of tool wear, surface roughness and cutting chip breaking compared to using dry cutting and cryogenic air cutting. And the results obtained show that when cryogenic MQL and cryogenic air cutting were applied to high speed cutting, they had more advantages.


Mechanik ◽  
2018 ◽  
Vol 91 (10) ◽  
pp. 871-873
Author(s):  
Józef Kuczmaszewski ◽  
Paweł Pieśko ◽  
Magdalena Zawada-Michałowska

The analysis of cutting forces during in-cut and out-cut milling of EN AC-AlSi10Mg cast aluminum alloy was presented. The research included measurement of the components of the total cutting force: Ff, Fp and Fc (Fx, Fy, Fz respectively) and determination of their amplitudes at a constant feed per tooth value and the adopted variable technological parameters, i.e.: depth of cut ap, milling width ae and cutting speed vc. Based on the obtained results, it was found that along with the increase in the depth of cut and the milling width, the values of selected components and their amplitudes increase for both in-cut and out-cut milling. During rise of cutting speed, it was observed that the components of the total cutting force increase to the speed vc = 450 m/min, then their values begin to decrease. This is related to the transition from conventional machining to the range of High Speed Cutting. It is important that higher values of cutting forces were noted in the case of out-cut milling instead of in-cut milling.


2016 ◽  
Vol 874 ◽  
pp. 450-456
Author(s):  
Jun Shinozuka ◽  
Daiki Kidoura

This paper investigated the variation in a heat partition ratio of the cutting tool with the cutting speed ranging from 38 m/min to 6500 m/min. The orthogonal high-speed cutting experiment was performed utilizing an impact cutting tester developed. The cutting length in this study was 60 mm. The temperatures at the tool-chip interface were measured directly with three pairs of Cu/Ni micro thermocouples fabricated on the rake face. The temperature rises rapidly from the beginning of cutting, and then levels off when a cutting distance exceeds about 10 to 20 times the depth of cut. The distance depends on the cutting speed. Using the temperatures measured, a variation in the heat partition ratio with cutting time was estimated with the aid of a FEA. The heat partition ratio at the end of cutting estimated decreases approximately from 7 % to 1 % as the cutting speed increases from 38 m/min to 6500 m/min. The heat partition ratio estimated is quite higher than that calculated by employing an analysis assuming the steady state, particularly under the high speed cutting conditions.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


Sign in / Sign up

Export Citation Format

Share Document