Manufacturing of Functionally Graded Porous Products by Selective Laser Sintering

2009 ◽  
Vol 631-632 ◽  
pp. 253-258 ◽  
Author(s):  
M. Erdal ◽  
Serkan Dag ◽  
Y. Jande ◽  
C.M. Tekin

Selective laser sintering (SLS) is a rapid prototyping technique which is used to manufacture plastic and metal models. The porosity of the final product obtained by SLS can be controlled by changing the energy density level used during the manufacturing process. The energy density level is itself dependent upon manufacturing parameters such as laser power, hatching distance and scanning speed. Through mechanical characterization techniques, it is possible to quantitatively relate the energy density levels to particular strength values. The present study is directed towards manufacturing functionally graded polyamide products by changing the energy density level in a predetermined manner. The mechanical properties of the functionally graded components are characterized by means of tensile testing. Both homogeneous and functionally graded specimens are produced and tested in order to examine the influence of the energy density level on the mechanical response and on the ultimate tensile and rupture strengths. Selective laser sintering is shown to possess the potential to produce functionally graded porous specimens with controlled variations in physical and mechanical properties.

2011 ◽  
Vol 59 (5-8) ◽  
pp. 583-591 ◽  
Author(s):  
Janaina Lisi Leite ◽  
Gean Victor Salmoria ◽  
Rodrigo A. Paggi ◽  
Carlos Henrique Ahrens ◽  
Antonio Sérgio Pouzada

2014 ◽  
Vol 6 ◽  
pp. 640496 ◽  
Author(s):  
G. V. Salmoria ◽  
D. Hotza ◽  
P. Klauss ◽  
L. A. Kanis ◽  
C. R. M. Roesler

The techniques of Rapid Prototyping, also known as Additive Manufacturing, have prompted research into methods of manufacturing polymeric materials with controlled porosity. This paper presents the characterization of the structure and mechanical properties of porous polycaprolactone (PCL) fabricated by Selective Laser Sintering (SLS) using two different particle sizes and laser processing conditions. The results of this study indicated that it is possible to control the microstructure, that is, pore size and degree of porosity, of the polycaprolactone matrix using the SLS technique, by varying the particle size and laser energy density, obtaining materials suitable for different applications, scaffolds and drug delivery and fluid mechanical devices. The specimens manufactured with smaller particles and higher laser energy density showed a higher degree of sintering, flexural modulus, and fatigue resistance when compared with the other specimens.


2020 ◽  
Vol 184 ◽  
pp. 01047 ◽  
Author(s):  
Pankaj Kumar ◽  
Gazanfar Mustafa Ali syed

Additive manufacturing (also known as 3D printing) process is an emerging technique for the fabrication of biomedical components. Selective laser sintering or melting is one of the widely used additive printing technology for manufacturing of metallic and non-metallic components used in the industry. This review paper presents, a summary of the published research papers on the fabrication of biomedical components using selective laser sintering technique. Therefore, author meticulously attempted to investigate individual biocompatible material-wise review which includes Ti6Al4V, Ti-7.5 Mo alloy, β-Ti35Zr28Nb, PEEK, PA2200, and Polyamide/Hydroxyapatite. In addition, this article also explores the effects of the various laser sintering process parameters such as laser power, scanning speed, density of the material on the mechanical properties, tribological properties, porosity and surface roughness of the fabricated alloy. Moreover, the author also investigated challenges and future prospective of the laser processing of biomedical implants.


2020 ◽  
Vol 26 (6) ◽  
pp. 1103-1112
Author(s):  
Saleh Ahmed Aldahash ◽  
Abdelrasoul M. Gadelmoula

Purpose The cement-filled PA12 manufactured by selective laser sintering (SLS) offers desirable mechanical properties; however, these properties are dependent on several fabrication parameters. As a result, SLS prototypes may exhibit orthotropic mechanical properties unless properly oriented in build chamber. This paper aims to evaluate the effects of part build orientation, laser energy and cement content on mechanical properties of cement-filled PA12. Design/methodology/approach The test specimens were fabricated by SLS using the “DTM Sinterstation 2000” system at which the specimens were aligned along six different orientations. The scanning speed was 914mm/s, scan spacing was 0.15mm, layer thickness was 0.1mm and laser power was 4.5–8Watt. A total of 270 tensile specimens, 270 flexural specimens and 135 compression specimens were manufactured and the tensile, compression and flexural properties of fabricated specimens were evaluated. Findings The experiments revealed orientation-dependent (orthotropic) mechanical properties of SLS cement-filled PA12 and confirmed that the parts with shorter scan vectors have enhanced flexural strength as compared with longer scan vectors. The maximum deviations of ultimate tensile strength, compressive strength and flexural modulus along the six orientations were 32%, 26% and 36%, respectively. Originality/value Although part build orientation is a key fabrication parameter, very little was found in open literature with contradictory findings about its effect on mechanical properties of fabricated parts. In this work, the effects of build orientation when combined with other fabrication parameters on the properties of SLS parts were evaluated along six different orientations.


2020 ◽  
pp. 089270572093917
Author(s):  
Aboubaker IB Idriss ◽  
Jian Li ◽  
Yanling Guo ◽  
Yangwei Wang ◽  
Xingdong Li ◽  
...  

This article aims to improve the sintering quality of the sisal fiber/poly-(ether sulfone) (PES) composite (SFPC) part fabricated via selective laser sintering (SLS). The sisal fiber and PES powders were proposed as the feedstock of the SFPC powder bed for SLS. An orthogonal experimental methodology with four levels and five factors was applied to optimize the process parameters for the single-layer sintering experiment. The mechanical properties and accurate dimensions of the sintered part were tested using a universal testing machine and Vernier caliper. The preheating temperature, scanning speed, and laser power were selected as influencing factors on the mechanical properties and accuracy dimensions of the SFPC part. Furthermore, the influence factors on the quality of the sintered part were studied and analyzed. Additionally, the synthesis weighted scoring method was used to determine the optimum parameters of the SLS part. The results showed that the optimal parameters (factors) were preheating temperature of 82°C, scanning speed of 2 m s−1, laser power of 14 W, and laser wavelength of 10.6 μm. Thus, the quality of SFPC part was significantly enhanced when the optimum parameters were applied in SLS process. This article provided the main reference value for the choice of the process parameters of the biomass composite.


2019 ◽  
Vol 9 (7) ◽  
pp. 1308 ◽  
Author(s):  
Rob Kleijnen ◽  
Manfred Schmid ◽  
Konrad Wegener

This work describes the production of a spherical polybutylene terephthalate (PBT) powder and its processing with selective laser sintering (SLS). The powder was produced via melt emulsification, a continuous extrusion-based process. PBT was melt blended with polyethylene glycol (PEG), creating an emulsion of spherical PBT droplets in a PEG matrix. Powder could be extracted after dissolving the PEG matrix phase in water. The extrusion settings were adjusted to optimize the size and yield of PBT particles. After classification, 79 vol. % of particles fell within a range of 10–100 µm. Owing to its spherical shape, the powder exhibited excellent flowability and packing properties. After powder production, the width of the thermal processing (sintering) window was reduced by 7.6 °C. Processing of the powder on a laser sintering machine was only possible with difficulties. The parts exhibited mechanical properties inferior to injection-molded specimens. The main reason lied in the PBT being prone to thermal degradation and hydrolysis during the powder production process. Melt emulsification in general is a process well suited to produce a large variety of SLS powders with exceptional flowability.


Sign in / Sign up

Export Citation Format

Share Document