scholarly journals Emerging trend in manufacturing of 3D biomedical components using selective laser sintering: A review

2020 ◽  
Vol 184 ◽  
pp. 01047 ◽  
Author(s):  
Pankaj Kumar ◽  
Gazanfar Mustafa Ali syed

Additive manufacturing (also known as 3D printing) process is an emerging technique for the fabrication of biomedical components. Selective laser sintering or melting is one of the widely used additive printing technology for manufacturing of metallic and non-metallic components used in the industry. This review paper presents, a summary of the published research papers on the fabrication of biomedical components using selective laser sintering technique. Therefore, author meticulously attempted to investigate individual biocompatible material-wise review which includes Ti6Al4V, Ti-7.5 Mo alloy, β-Ti35Zr28Nb, PEEK, PA2200, and Polyamide/Hydroxyapatite. In addition, this article also explores the effects of the various laser sintering process parameters such as laser power, scanning speed, density of the material on the mechanical properties, tribological properties, porosity and surface roughness of the fabricated alloy. Moreover, the author also investigated challenges and future prospective of the laser processing of biomedical implants.

2015 ◽  
Vol 775 ◽  
pp. 209-213
Author(s):  
Nai Fei Ren ◽  
Ya Hui Hang ◽  
Yan Zhao ◽  
Qi Yu Yang

During selective laser sintering process, different sintering parameters have great impact on the performance of the molded parts, and the degree of influence is different. Using orthogonal test, indirect sintered 316L stainless steel, the compressive strength and precision of the parts were measured and compared to study the influence of various sintering parameters (laser power, scanning speed, scan spacing, preheating temperature) on sintering. The greater degree of influence factors were got by range analysis. The results show that laser power, scanning speed and scan spacing have greater degree of influence on the compressive strength of the parts, and the preheating temperature have less impact. By comparison, the optimum set of parameters was concluded: the laser power is 15W, the scanning speed is 1900mm/s, the scan spacing is 0.125mm, and the preheating temperature is 60°C.


2020 ◽  
pp. 089270572093917
Author(s):  
Aboubaker IB Idriss ◽  
Jian Li ◽  
Yanling Guo ◽  
Yangwei Wang ◽  
Xingdong Li ◽  
...  

This article aims to improve the sintering quality of the sisal fiber/poly-(ether sulfone) (PES) composite (SFPC) part fabricated via selective laser sintering (SLS). The sisal fiber and PES powders were proposed as the feedstock of the SFPC powder bed for SLS. An orthogonal experimental methodology with four levels and five factors was applied to optimize the process parameters for the single-layer sintering experiment. The mechanical properties and accurate dimensions of the sintered part were tested using a universal testing machine and Vernier caliper. The preheating temperature, scanning speed, and laser power were selected as influencing factors on the mechanical properties and accuracy dimensions of the SFPC part. Furthermore, the influence factors on the quality of the sintered part were studied and analyzed. Additionally, the synthesis weighted scoring method was used to determine the optimum parameters of the SLS part. The results showed that the optimal parameters (factors) were preheating temperature of 82°C, scanning speed of 2 m s−1, laser power of 14 W, and laser wavelength of 10.6 μm. Thus, the quality of SFPC part was significantly enhanced when the optimum parameters were applied in SLS process. This article provided the main reference value for the choice of the process parameters of the biomass composite.


2010 ◽  
Vol 43 ◽  
pp. 578-582 ◽  
Author(s):  
C.Y. Wang ◽  
Q. Dong ◽  
X.X. Shen

Warpage is a crucial factor to accuracy of sintering part in selective laser sintering (SLS) process. In this paper, The influence of process parameters on warpage when sintering polystyrene(PS) materials in SLS are investigated. The laser power, scanning speed, hatch spacing, layer thickness as well as temperature of powder are considered as the main process parameters. The results showed that warpage increases with the increase of hatch space. Contary to it, warpage decreases with the increase of laser power. Warpage decreases with the increase of layer thickness between 0.16~0.18mm and changes little with increase of the thickness. Warpage increases along with the increase of scanning speed but decreases when the speed is over about 2000mm/s. When the temperature changes between 82°C-86°C, warpage decreases little with the increase of temperature. But further increase of temperature leads to warpage decreasing sharply when the temperature changes between 86°C-90°C.


2020 ◽  
Vol 4 (3) ◽  
pp. 108
Author(s):  
Tobias Heckner ◽  
Michael Seitz ◽  
Sven Robert Raisch ◽  
Gerrit Huelder ◽  
Peter Middendorf

In Selective Laser Sintering, fibres are strongly orientated during the powder recoating process. This effect leads to an additional increase of anisotropy in the final printed parts. This study investigates the influence of process parameter variation on the mechanical properties and the fibre orientation. A full factorial design of experiment was created to evaluate the processing parameters of recoating speed, layer thickness and laser power on the part’s modulus of elasticity. Based on the mechanical testing, computed tomography was applied to selected samples to investigate the process-induced fibre microstructure, and calculate the fibre orientation tensors. The results show increasing part stiffness in the deposition direction, with decreasing layer thickness and increasing laser power, while the recoating speed only shows little effect on the mechanical performance. This complies with computed tomography imaging results, which show an increase in fibre orientation with smaller layer thickness. With thinner layers, and hence smaller shear gaps, shear stresses induced by the roller during recoating increase significantly, leading to excessive fibre reorientation and alignment. The high level of fibre alignment implies an increase of strength and stiffness in the recoating direction. In addition, thinner layer thickness under constant laser energy density results in improved melting behaviour, and thus improved fibre consolidation, consequently further increasing the mechanical properties. Meanwhile, the parameters of recoating speed and laser power do not have a significant impact on fibre orientation within their applicable process windows.


2014 ◽  
Vol 915-916 ◽  
pp. 1000-1004 ◽  
Author(s):  
Xiao Hui Song ◽  
Yu Sheng Shi ◽  
Ping Hui Song ◽  
Qing Song Wei ◽  
Wei Li

Selective Laser Sintering (SLS) has been successfully and broadly applied in biomedical engineering to fabricated biomedical part. And the porosity and microstructure of part can be controlled by main sintered parameters. This research focused aliphatic Polycarbonate (PC) sintered with SLS. According to the orthogonal experiment, the effect of laser power energy and interaction between main sintered parameters on porosity has been studied. Then the micro structure and mechanical properties of specimens sintered with the best optimal parameters have been analyzed.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fredrick M. Mwania ◽  
Maina Maringa ◽  
Jakobus. G. van der Walt

Polymer laser sintering is an elaborate additive manufacturing technique because it is subject to process parameters and material properties. In this regard, each polymeric material necessitates a different set of process conditions. To this end, testing was done to determine the most suitable process parameters for a new commercially available polymer (Laser PP CP 60), from Diamond Plastics GmbH. It was established that the material requires slightly different settings from those provided by the supplier for the values for the removal chamber temperature, building chamber temperatures, and laser power to achieve the best mechanical properties (ultimate tensile strength). The preliminary testing indicates that the process parameters that yielded the best mechanical properties for the laser PP CP 60 powder were 125°C, 125°C, 0.15 mm, 250 μm, 4500 mm/s, 34.7 W, 1500 mm/s, and 21.3 W for the removal chamber temperature, building chamber temperature layer thickness, hatch distance, scanning speed fill, laser power fill, scanning speed contour, and laser power contour, respectively.


Author(s):  
Hideki Kyogoku ◽  
Takeshi Uemori ◽  
Akihiko Ikuta ◽  
Kenichi Yoshikawa ◽  
Hitoshi Ohmori

In this study, the fabrication conditions of WC cemented carbides by direct selective laser melting were investigated. The effects of additives, such as Co, Cu-20%Sn and Cu powders, and laser scanning conditions on laser sintering process were examined to fabricate a sound laser-scanned body of WC cemented carbides. The optimum laser power, scan speed and scan pitch were found out by experiments. It was found that the continuously smooth single-scan track can be obtained at a lower laser power and a higher scan speed by the addition of 30% Cu powder. The smooth surface of the laser-scanned body could be fabricated at a laser power of 9 W, a scan speed of 20 mm/s and a scan pitch of 0.05 mm.


Author(s):  
Genrik Mordas ◽  
Ada Steponavičiūtė ◽  
Aušra Selskienė ◽  
Jurijus Tretjakovas ◽  
Sergejus Borodinas

Additive manufacturing (AM) is a type of manufacturing technologies whereby the material is added a layer upon layer to produce a 3D object. Produced 3D parts are applied in such industry sectors as space, aviation, automotive, building and has excellent future promises. Ourdays, the commercialy promised technique for metal manufacturing is Direct Metal Laser Sintering (DMLS). Our study concentrated on the investigation of the mechanical properties of produced17-4H (stainless steel) parts using DMLS. The effect of the DMLS process parameters (laser power, scanning speed and energy density) on the ultimate strength, yield strength and Young’s modulus was determined. We showed an evolution of the microstructure. The detected defects were classified. This study allowed to determine the optimal regimes of DMLS for SS 17-4H and describe mechanical properties of the produced parts as well as helped to show future possibilities of DMLS development.


Sign in / Sign up

Export Citation Format

Share Document