Study on the Microstructure and Electrical Properties of Pb(Zr0.53 Ti0.47)O3 Thin-Films

2010 ◽  
Vol 644 ◽  
pp. 97-100 ◽  
Author(s):  
Leo A. Baldenegro-Perez ◽  
Wardia Debray-Mechtaly ◽  
E. Fuentes-Fernandez ◽  
M.A. Quevedo-López ◽  
Husam N. Alshareef ◽  
...  

In the present study a complete analysis of the morphological and electrical properties of PZT layers with composition 53Zr-47Ti is presented. Three different samples composed of 3, 6, and 9 PZT layers were analyzed on a substrate consisting of ZrO2-SiO2-Si structures. The PZT and ZrO2 layers were deposited via Sol-Gel, whereas the SiO2 layer, on every sample, was deposited via PECVD. SEM results showed morphology of very small granules on the 3 layered thin-film samples (12 nm), on the 6 layered thin-film samples a mixture of small and large size (100-300 nm) granule formation was observed, with the 9 layered thin-film samples exhibiting very large granule sizes (bigger than 300 nm). XRD results showed that increasing the number of deposited layers caused an incremental increase on the detected peak intensities, aided in the promotion of the perovskite phase, and diminished the presence of the pyrochlore phase. It was also observed, during electrical measurements, that increasing the number deposited layers directly increased the overall capacitance of the thin-film structure. This effect was attributed primarily to the large amount of perovskite and large size of grains presented on thick samples.

2008 ◽  
Vol 23 (2) ◽  
pp. 536-542 ◽  
Author(s):  
Phoi Chin Goh ◽  
Kui Yao ◽  
Zhong Chen

Ferroelectric thin films of the 0.1Pb(Ni1/3Nb2/3)O3–0.35Pb(Zn1/3Nb2/3)O3–0.15Pb (Mg1/3Nb2/3)O3–0.1PbZrO3–0.3PbTiO3 (PNN–PZN–PMN–PZ–PT) complex oxide system were prepared on Pt/Ti/SiO2/Si substrates using a polymer-modified sol-gel method followed by a rapid thermal annealing (RTA) process. It was found that the addition of excess NiO is effective in stabilizing the perovskite phase while suppressing the pyrochlore phase. The crystalline structure and morphology of the films with different amounts of access NiO were studied with x-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The electrical properties, including dielectric, ferroelectric, and piezoelectric, showed a significant improvement with excess NiO. The film sample with 3 mol% of excess NiO exhibited optimized electrical properties. Different parameters, including tolerance factors on the basis of ionic radii, electronegativity differences between cations and anions, and oxygen bond valences, were applied to analyze the stability of the perovskite phase with different amount of excess NiO. Analysis results indicated that only the bond-valence theory could explain the effect of excess NiO on the stability of the perovskite phase under the assumption that the excess Ni2+ entered the A sites of the perovskite structure.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


1995 ◽  
Vol 34 (Part 1, No. 11) ◽  
pp. 6133-6138 ◽  
Author(s):  
Su Jae Lee ◽  
Min Su Jang ◽  
Chae Ryong Cho ◽  
Kwang Yong Kang ◽  
SeokKilHan

2011 ◽  
Vol 326 (1) ◽  
pp. 175-178 ◽  
Author(s):  
Jun Hyuk Choi ◽  
Soo Min Hwang ◽  
Chang Min Lee ◽  
Ji Cheol Kim ◽  
Geun Chul Park ◽  
...  

1999 ◽  
Vol 596 ◽  
Author(s):  
Tingkai Li ◽  
Sheng Teng Hsu ◽  
Yufei Gao ◽  
Mark Engelhard

AbstractThree kinds of oriented electrodes of Pt, Ir and Pt/Ir electrodes were prepared using electron beam evaporation techniques for deposition of PZT thin films. An oxide MOCVD reactor with liquid delivery system was used for the growth of PZT thin films. [Pb(thd)2], Zr(TMHD)4 and Ti(IPO)4 were dissolved in a mixed solvent of tetrahydrofuran or butyl ether, isopropanol and tetraglyme to form a precursor source. The deposition temperature and pressure were 500 - 650°C and 5 - 10 Torr, respectively. The experimental results showed PZT thin film deposited on various electrodes had different phase formation, microstructure and ferroelectric property. The X-ray patterns showed the perovskite phase of PZT was formed on both Ir and Pt/Ir electrodes at 550°C. The grain size of the PZT thin film increases after a further, higher temperature annealing. The as-deposited PZT thin film on Pt electrode exhibits pyrochlore phase at 550°C. The phase is transformed to perovskite phase after 650°C annealing. The experimental results also indicated that the MOCVD PZT thin film on Pt/Ir exhibits better ferroelectric and electrical properties compared to those deposited on Pt and Ir electrodes. A 300 nm thick PZT thin film on Pt/Ir electrode has a square, well saturated, and symmetrical hysteresis loop with 2Pr value of 40 μC/cm2 and 2Ec of 73 kV/cm at an applied voltage of 5 V. The hysteresis loop of the PZT thin film is almost saturated at 2 V. The leakage current of the film is 6.16 × 10−7 A/cm2 at 100 KV/cm. The electrode effects on ferroelectric properties of PZT thin films also have been investigated.


Sign in / Sign up

Export Citation Format

Share Document