Effect of Niobium Content on Laminar Precipitate and High Temperature Mechanical Properties of 21-2N Valve Steel

2010 ◽  
Vol 654-656 ◽  
pp. 182-185
Author(s):  
Shi Chang Cheng ◽  
Zheng Dong Liu ◽  
Zhao Jie Lin ◽  
Han Sheng Bao

Effect of niobium content on laminar precipitate and high temperature mechanical properties of 21-2N vavle steel was systematically studied, using specimens contain 0.26%, 0.43%, 0.65% 0.82% and 1.06% Nb. After different solid solution treatment and 750 °C aging heat treatment, experimental results showed that laminar precipitate was suppressed by niobium addition, and with the increasing of niobium content, laminar precipitate content decreased and size, distribution and morphology of laminar precipitate was meliorated. Then creep rupture strength and fatigue strength of experimental steels are improved with increasing of niobium.

2011 ◽  
Vol 142 ◽  
pp. 95-98
Author(s):  
Jian Sheng Ding ◽  
Lin Xun Liu ◽  
Jin Chun Feng

The supercritical material F92 steel is regarded as the research object, and the influence law of heat treatment process on its tissue and properties is analyzed. The results show that when the temperature of heat treatment quenching and tempering is too low, a large number of alloying elements cannot be fully integrated into the austenite, and the optimal obdurability of F92 steel is still not fully exploited; while too high temperature of heat treatment quenching and tempering will weaken the strength, plasticity and toughness. When F92 steel is processed by heating quenching at 1050 °C and tempering at 680 °C, its tissue is the smaller tempered lath martensite. The carbide is precipitated, generating precipitation strengthening, which gives it a high rupture strength and toughness. F92 steel is with high mechanical properties when heating quenched at 1050 °C and tempered 680 °C.


1986 ◽  
Vol 81 ◽  
Author(s):  
S. E. Hsu ◽  
N. N. Hsu ◽  
C. H. Tong ◽  
C. Y. Ma ◽  
S. Y. Lee

AbstractHigh temperature mechanical properties of various Zr and Cr strengthened single phase Ni3Al are investigated, with emphasis on the ability of each element to elevate Tp, the temperature corresponding to the peak yield strength. It is observed that Zr is a very effective strengthener, more so below Tp than above it, while a combination of Cr and Zr is capable of shifting Tp to a higher temperature. The combination results in an effective improvement of the rupture strength of Ni3Al. The strengthening mechanisms of each element will be discussed in this paper.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4256
Author(s):  
Xiao-Yan Wang ◽  
Meng Li ◽  
Zhi-Xun Wen

The as-cast alloy of nickel-based single-crystal superalloy was used as the research object. After four hours of solution treatment at 1315 °C, four cooling rates (water cooling (WC), air cooling (AC) and furnace cooling (FC1/FC2)) were used to reduce the alloy to room temperature. Four different microstructures of nickel-based superalloy material were prepared. A high-temperature tensile test at 980 °C was carried out to study the influence of various rates on the formation of the material’s microstructure and to further obtain the influence of different microstructures on the high-temperature mechanical properties of the materials. The results show that an increase of cooling rate resulted in a larger γ′ phase nucleation rate, formation of a smaller γ′ phase and a greater number. When air cooling was used, the uniformity of the γ′ phase and the coherence relationship between the γ′ phase and the γ phase were the best. At the same time, the test alloy had the best high-temperature tensile properties, and the material showed a certain degree of plasticity. TEM test results showed that the test alloy mainly blocked dislocations from traveling in the material through the strengthening effect of γ′, and that AC had the strongest hindering effect on γ′ dislocation movement.


Author(s):  
J. A. Horton ◽  
A. DasGupta ◽  
C. T. Liu

Ordered intermetallic alloys potentially have good high temperature mechanical properties which often are obtained by macroalloying. Since service temperatures may be near the critical ordering temperature, Tc, it is important to understand the disordering processes. The disordering mechanism in an alloy of 52.5 at. % Ni—22.5 Fe—14.5 V—10 Al—0.5 Ti [which can be expressed as (Ni70Fe30)3(V58Al40Ti2)], will be presented here. The aluminum was added to increase Tc from 750 to 975°C and stabilize the Ll2 structure.All specimens were first fully ordered by a heat treatment consisting of 30 min at 1000°C, 1 d at 700°C and 2 d at 600°C which results in a “swirl” pattern of antiphase boundaries (APB) similar to Fig. 1. Specimens were then heat-treated for 24 h at temperatures from 600 to 950°C in 50°C increments and water quenched.


2005 ◽  
Vol 297-300 ◽  
pp. 1220-1222
Author(s):  
Shi Chang Cheng ◽  
Zhao Jie Lin ◽  
Gang Yang ◽  
Zheng Dong Liu

The authors experimentally investigated the change of mechanical properties of Inconel X-750 alloy under various heat treatments. For the selected specimens, solid solution treatment under different temperatures was carried out, followed air cooling or furnace cooling. Results show that suitable solid solution treatment and air cooling enhances the strength, plasticity, impact toughness at room temperature of the alloy and lowers the hardness of the alloy at room temperature.


2011 ◽  
Vol 194-196 ◽  
pp. 1319-1325
Author(s):  
Zheng Tian ◽  
Zhan Yi Cao ◽  
Jian Meng

The effect of yttrium addition and heat treatment on the mechanical properties and microstructure of AM60 magnesium alloy have been investigated using X-ray phase analysis, microstructure investigation, tensile test, hardness measurement and fracture surfaces analysis. The results showed that the mechanical properties of the alloys were obviously improved with the addition of yttrium no more than 1.0%. The reinforcement of the alloys resulted from the appearance of Al2Y phase. After solid-solution treatment (T4), the Mg17Al12 phase almost dissolved in Mg matrix, but the rare earth compounds Al2Y phase was rather stable. The ultimate tensile strength σb was improved, but the yield strength σ0.2 and elongation δ were only slightly changed. After solid-solution + aging treatment (T6), the Mg17Al12 phase precipitated again and their morphology was changed. The yield strength σ0.2 was improved.


Sign in / Sign up

Export Citation Format

Share Document