Approach by Simulation of Residual Stress Generated by Shot-Peening and Their Stability during Fatigue Cycling

2011 ◽  
Vol 681 ◽  
pp. 303-308
Author(s):  
H. Michaud ◽  
Jean Michel Sprauel ◽  
Chedly Braham

ASCOMETAL produces alloy steels used for spring (leaf or coil), where the weak fatigue points are on the surface which is reinforced by shot-peening. So, the fatigue optimization with the steel grade needs a perfect knowledge of the material answer after shot-peening. For that reason, an analytical model has been developed where low cycle fatigue behaviour and all the usual process parameters are integrated (especially the impact position, and the covering-rate). Moreover, through a Monte-Carlos approach, the model permits to analyse the effect of scattering elements like impact speeds, ball sizes, or material fatigue behaviour. With this model several key process parameters have been analysed and validated with residual stress profiles evaluated by X-ray diffraction. So, for spring leaf, the effect of an applied load during shot-peening or shakedown during bending fatigue is described.

Author(s):  
Abdalla Elbella ◽  
Fawaz Fadul ◽  
Sri Harsha Uddanda ◽  
Nagender Reddy Kasarla

The shot peening process is known for the surface treatment of metallic components. The process is used to enhance surface strength and extend component fatigue life by introducing a compressive residual stress pattern in the surface layers of the component. Numerical simulation of the shot peening process is a tool that has been recently used to help control the process. The simulation helps in investigating the effects of the process parameters with an aim of attaining the optimum residual stress profile and maximum process gain. In this paper, elasto-plastic finite element simulation is used to perform this investigative analysis. The process parameters that are varied in this analysis are: the shot diameter, shot velocity, incidence angle and target material. The analysis is to be carried for three different materials, namely, steel, aluminum and titanium. An Explicit commercial finite element code (ABAQUS) is used to simulate the impact phenomenon. The results of the analysis are sets of varying plots of residual stress through the depth of the targets.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2784
Author(s):  
Georgios Maliaris ◽  
Christos Gakias ◽  
Michail Malikoutsakis ◽  
Georgios Savaidis

Shot peening is one of the most favored surface treatment processes mostly applied on large-scale engineering components to enhance their fatigue performance. Due to the stochastic nature and the mutual interactions of process parameters and the partially contradictory effects caused on the component’s surface (increase in residual stress, work-hardening, and increase in roughness), there is demand for capable and user-friendly simulation models to support the responsible engineers in developing optimal shot-peening processes. The present paper contains a user-friendly Finite Element Method-based 2D model covering all major process parameters. Its novelty and scientific breakthrough lie in its capability to consider various size distributions and elastoplastic material properties of the shots. Therewith, the model is capable to provide insight into the influence of every individual process parameter and their interactions. Despite certain restrictions arising from its 2D nature, the model can be accurately applied for qualitative or comparative studies and processes’ assessments to select the most promising one(s) for the further experimental investigations. The model is applied to a high-strength steel grade used for automotive leaf springs considering real shot size distributions. The results reveal that the increase in shot velocity and the impact angle increase the extent of the residual stresses but also the surface roughness. The usage of elastoplastic material properties for the shots has been proved crucial to obtain physically reasonable results regarding the component’s behavior.


2011 ◽  
Vol 675-677 ◽  
pp. 747-750
Author(s):  
B. Han ◽  
Dong Ying Ju ◽  
Xiao Guang Yu

Water cavitation peening (WCP) with aeration, namely, a new ventilation nozzle with aeration is adopted to improve the process capability of WCP by increasing the impact pressure induced by the bubble collapse on the surface of components. In this study, in order to investigate the process capability of the WCP with aeration a standard N-type almen strips of spring steel SAE 1070 was treated byWCP with various process conditions, and the arc height value and the residual stress in the superficial layers were measured by means of the Almen-scale and X-ray diffraction method, respectively. The optimal fluxes of aeration and the optimal standoff distances were achieved. The maximum of arc height value reach around 150μm. The depth of plastic layer observed from the results of residual stresses is up to 150μm. The results verify the existence of macro-plastic strain in WCP processing. The distributions of residual stress in near-surface under different peening intensity can provide a reference for engineers to decide the optimal process conditions of WCP processing.


2008 ◽  
Vol 373-374 ◽  
pp. 754-757 ◽  
Author(s):  
Dong Ying Ju ◽  
B. Han

Water cavitation peening (WCP) with aeration is a novel surface enhancement method. A new ventilation nozzle with aeration is adopted to improve the process capability of WCP by increasing the impact pressure induced by the bubble collapse on the surface of components. In this study, in order to investigate the process capability of the WCP with aeration, a standard N-type almen strips of spring steel SAE 1070 was treated by WCP with various process conditions, and the arc height value and the residual stress in the superficial layers were measured by X-ray diffraction method. The optimal fluxes of aeration and the optimal standoff distances were achieved.


2013 ◽  
Vol 768-769 ◽  
pp. 503-509 ◽  
Author(s):  
Jawad Badreddine ◽  
Emmanuelle Rouhaud ◽  
Matthieu Micoulaut ◽  
Sebastien Remy ◽  
Vincent Desfontaine ◽  
...  

This paper presents a 3D model that simulates an ultrasonic shot peening (USP) operation, using realistic process parameters and peening setups (part and chamber geometries). By simulating the shot dynamics (shot trajectories and impacts), statistical and spatial data are obtained for the peened component, i.e. surface coverage and coverage rate, impact speeds and angles, dissipated energy... This data can then be used for i) optimizing the design of peening chambers and process parameters and ii) predicting the residual stress and displacement fields induced by USP in the peened component. In fact, data from the 3D model can be used as initial data in existing residual stress prediction models. A chaining methodology was developed for this purpose and allows linking the choice of process parameters and USP setup to the induced residual stress displacement fields.


2021 ◽  
Author(s):  
◽  
William Davey

TIMETAL®407 (Ti-407) is a medium strength (~650MPa 0.2%YS) titanium alloy, recently developed by TIMET, in conjunction with Rolls-Royce plc for use in applications requiring high energy absorption at impact. Preliminary Charpy Impact (V notch) testing showed Ti-407 to absorb nearly twice the impact energy of Ti-6-4 and exhibit more than 2.5 times the lateral expansion. Further initial testing suggested the high cycle fatigue (HCF) run out stress of Ti-407 matches that of Ti-6-4 and other high strength alpha-beta titanium alloys. Ti-407 displayed more than double the tool life than that of Ti-6-4. The reduction in tool wear supports lower forces required for faster, more efficient machining. Compared to Ti-6-4, the relatively low elevated temperature flow stress, greater malleability and wide process window should allow Ti-407 to be processed with fewer reheats, while exhibiting reduced surface cracking and giving a consistently good surface finish. Optimised Ti-407 manufacturing processes should allow parts to be formed closer to net shape giving higher yields and requiring less machining to the components finished size. This project has evaluated HCF, as well as low cycle fatigue (LCF) and dwell fatigue crack initiation mechanisms in Ti-407, to clarify the effects of alloy chemistry, microstructural morphology and scale, and crystallographic texture. A derivative of Ti-407, Ti-412 (~750MPa 0.2%YS) was also tested towards the end of the project and helped to further elucidate understanding of the fatigue characteristics of the two alloys. Of interest was the strong HCF response displayed relative to the monotonic tensile strength. As well as the investigation into the crack initiation mechanisms, an assessment of crack propagation across a range of microstructural conditions was carried out on Ti-407 material.


2005 ◽  
Vol 490-491 ◽  
pp. 67-72 ◽  
Author(s):  
C. Pilé ◽  
Manuel François ◽  
Delphine Retraint ◽  
Emmanuelle Rouhaud ◽  
Jian Lu

The aim of this work is to reach a better understanding of the ultrasonic shot-peening process and, in particular, the evolution of the shot speed distribution. A simple 1D modelling of the interaction between the shots and the sonotrode is carried out. The impact is considered as inelastic with an energy absorption that depends on the speed of the shot. It is found that after about 10 interactions (» 1s) the speed distribution in the chamber follows a Maxwell-Boltzmann distribution, which is the distribution found in a perfect gas at equilibrium. The influence of various process parameters such as the sonotrode amplitude, the vibration frequency on the average speed and on the Almen intensity is studied.


2009 ◽  
Vol 416 ◽  
pp. 45-50
Author(s):  
Guang Hui Lu ◽  
Xue Ping Zhang ◽  
Er Wei Gao

It is well known that there is a lager deviation in the fatigue life of machined components even under nominally identical loading conditions. Understanding and controlling fatigue life variance are essential to enhance reliability. However, few research focus on the impact of machining processes on the fatigue life variance of machined components. In this study, surface residual stress distributions of bearing rings randomly selected from a production line by super-finishing grinding, are measured by X-ray diffraction method in cutting and feed direction, and its scatter is analyzed by statistical tools. Based on the variance prediction theories, build a simplified fatigue life variance prediction model incorporating the resultant residual stresses scatter induced by machining process. Based on the Basquin equation, the model is validated by experimental data published in literature. The predicted fatigue life agrees well with the experimental average fatigue life. Statistical analysis shows that the predicted variances of fatigue life are equal to those estimated from experimental fatigue life.


2011 ◽  
Vol 462-463 ◽  
pp. 343-348 ◽  
Author(s):  
Omar Suliman Zaroog ◽  
Aidy Ali ◽  
Sahari B. Barkawi ◽  
Rizal Zahari

The residual stress relaxation can be divided into two stages: The first cycle relaxation and the following cycles. In both stages, residual stress relaxed considerably from the initial state. The aim of this study is to investigate the residual stress relaxation and microhardness reduction after first and second cyclic load. A 2024 T351 aluminum alloy specimens were shot peened into three shot peening intensities. The fatigue test for first and second cyclic loads of two loads 15.5 kN and 30 kN was performed. The initial residual stress and residual stress after the first and second cycle stress was measured for the three shot peening intensities using X-ray diffraction. Microhardness test was performed for each specimen. The results showed that the residual stress relaxation for first cycle was reached more than 40% of the initial residual stress and it depends on the load amplitude, and microhardness decreased for the first cycle reached 22% and also it depended on load amplitude.


Sign in / Sign up

Export Citation Format

Share Document