Mechanical Characterization of Hepatoma Cells Using Atomic Force Microscope

2011 ◽  
Vol 694 ◽  
pp. 869-873
Author(s):  
Jing He Wang ◽  
Miao Yu ◽  
Li Liu ◽  
Jie Zhao ◽  
Hong Xiang Wang

In order to reveal variation of mechanical properties of hepatoma cells with nanometer resolution, atomic force microscopy (AFM)-based nanoindentation experiments are performed on hepatoma cell to derive Young’s modulus employing a corrected Hertz model. Under load conditions of nanoindentation force as 0.43809-0.73015nN and penetration rate as 0.4 Hz, the calculated value of Young’s modulus of hepatoma cells is 34.137±0.67kPa with a 95% confidence interval. The results demonstrate the Young’s modulus varies with the measurement position, and the center of cell possesses lower value than peripheral region. Variation of Young’s modulus is resulted from external reaction, which supports well the theory of cytoskeleton structure. Furthermore, the difference of Young’s modulus between normal cells and cancerous ones are also discussed, and it will provide possibility of a new route for early diagnosis of hepatoma.

2017 ◽  
Vol 890 ◽  
pp. 213-216 ◽  
Author(s):  
Adrian Chlanda ◽  
Ewa Kijeńska ◽  
Wojciech Święszkowski

Biodegradable polymeric fibers with nanoand submicron diameters, produced by electrospinning can be used as scaffolds in tissue engineering. It is necessary to characterize their mechanical properties especially at the nanoscale. The Force Spectroscopy is suitable atomic force microscopy mode, which allows to probe mechanical properties of the material, such as: reduced Young's modulus, deformation, adhesion, and dissipation. If combined with standard operating mode: contact or semicontact, it will also provide advanced topographical analysis. In this paper we are presenting results of Force Spectroscopy characterization of two kinds of electrospun fibers: polycaprolactone and polycaprolactone with hydroxyapatite addition. The average calculated from Johnson-Kendall-Roberts theory Young's modulus was 4 ± 1 MPa for pure polymer mesh and 20 ± 3 MPa for composite mesh.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Stylianou ◽  
K.S. Nikita ◽  
A. Malamou

: Atomic Force Microscopy (AFM) Nanoindentation procedure regarding biological samples poses significant challenges with respect to the accuracy of the provided results. These challenges are related to the inhomogeneity of biological samples, various uncertainties in experimental methods and certain approximations regarding the theoretical analysis. The most commonly used theoretical model for data processing at the linear elastic regime regarding biological samples is the Hertz model. This paper focuses on the investigation of the resulting errors of the basic equation of the Hertz theory that depend on the ratio, indentation depth/indenter’s radius regarding the Young’s modulus calculation. Several examples in the literature that do not take into account the value of the ratio indentation depth/indenter’s radius are reported and the related errors are presented and discussed. In addition, an extended new equation is derived which takes into account the influence of the aforementioned ratio on the calculation of the Young’s modulus and can be easily used for calculations. Moreover, a rational explanation, regarding the extended differences of the Young’s modulus calculations using the same experimental results when these are processed using the Hertz model and the Oliver & Pharr analysis (which is the general model that applies for any axisymmetric indenter) is provided. In conclusion, the derived equation is further combined with equations which take into account the shape of the sample in order to provide a complete and reliable theoretical tool which can be generally applied in order to reduce the errors produced by the current methodology.


Author(s):  
Paul Phamduy ◽  
Adam McLaughlin ◽  
Fan Gao ◽  
Byungki Kim ◽  
Zhiyong Gu

The objective of this report is to calculate the Young’s modulus of gold cantilevers on the nanoscale using a force-deflection test performed on an Atomic Force Microscope (AFM). These results are then compared to the Young’s modulus of gold on the macroscale. As shown from the results, the beam deflection tests confirm that the elastic modulus values obtained by this method are on the same order of magnitude as its macroscale counterpart.


Soft Matter ◽  
2018 ◽  
Vol 14 (16) ◽  
pp. 3192-3201 ◽  
Author(s):  
Srinivas Mettu ◽  
Qianyu Ye ◽  
Meifang Zhou ◽  
Raymond Dagastine ◽  
Muthupandian Ashokkumar

Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane.


Nanoscale ◽  
2018 ◽  
Vol 10 (27) ◽  
pp. 13022-13027 ◽  
Author(s):  
Basant Chitara ◽  
Assaf Ya'akobovitz

The present study highlights the elastic properties of suspended GaS, GaSe and GaTe nanosheets using atomic force microscopy. GaS exhibited the highest Young's modulus (∼173 GPa) among these nanosheets. These materials can withstand maximal stresses of up to 8 GPa and a maximal strain of 7% before breaking, making them suitable for stretchable electronic and optomechanical devices.


Sign in / Sign up

Export Citation Format

Share Document