Mechanical Adhesion and Pickling Behaviour of Thermal Oxide Scales on Hot-Rolled Low Carbon Steel Strips Produced by Different Finishing Temperatures

2011 ◽  
Vol 696 ◽  
pp. 170-175 ◽  
Author(s):  
Komsan Ngamkham ◽  
Satian Niltawach ◽  
Somrerk Chandra-ambhorn

Hot-rolled low carbon steel strips were produced using two different finishing temperatures at 910 and 820 °C in an industrial hot-rolling line. Mechanical adhesion of scale on the steel substrate at 40 mm from the edge was investigated by tensile test. It was found that the strain initiating the first spallation of scale produced at higher finishing temperature was lower. Spallation ratio which is a spalled area of scale divided by the total area of scale examined under an optical microscope was steeper when the scale was produced at higher finishing temperature. The lower values of strain initiating the first spallation and the higher values of spallation ratio of scale formed both at higher finishing temperature were due to higher thickness of that scale. Pickling behaviour of the hot-rolled steels was investigated by immersing the studied steels in a 10%v/v HCl solution at 80 °C. X-ray diffraction (XRD) peak of hematite relative to that of iron decreased with pickling time and approached zero during pickling periods from 3 to 10 s, while magnetite-and-iron ratio gradually decreased and tended to be zero at longer pickling time. This might indicate the existence of hematite as the outermost layer of scale and subscale containing magnetite as the inner part.

2011 ◽  
Vol 462-463 ◽  
pp. 407-412 ◽  
Author(s):  
Komsan Ngamkham ◽  
Satian Niltawach ◽  
Somrerk Chandra-ambhorn

The objective of this work was to carry out tensile tests to investigate the effect of finishing temperature on mechanical adhesion of thermal oxide scale on hot-rolled low carbon steel strips. Two hot-rolled low carbon steel strips were produced in an industrial hot rolling line by fixing a coiling temperature at 620 °C and varying finishing temperatures at 820 and 910 °C. Two testing methods were conducted. First, each of a number of samples was subjected to a given imposed strain with ex-situ imaging of scale surface after straining. Second, only one sample was strained in a test with ex-situ imaging of scale surface at every 2 mm elongation of the sample. A spallation ratio, an area where scale was spalled out and normalised by the total area observed by microscope, was plotted as a function of the imposed strain. These two methods gave the same tendency of results as follows. At a given strain, the spallation ratio of scale on steel produced using higher finishing temperature was larger. The gradient of spallation ratio with respect to the imposed strain of that scale was also steeper. This reflects the higher susceptibility of scale to spall out with increasing imposed strain. This behaviour might be related to the larger thickness of scale on steel produced using higher finishing temperature. For the second testing method, lowering the magnification of microscope to observe scale spallation from 50x to 20x increased R2 of the curve of spallation ratio versus the imposed strain, as well as improved the reproducibility of the test.


2011 ◽  
Vol 179-180 ◽  
pp. 253-256
Author(s):  
Hao Chen ◽  
Jian Gao Yang ◽  
Mi Song Chen

The Fe-based composite coatings were formed by plasma jet surface metallurgy using Fe, C, W, Cr and Al alloy powders on the low carbon steel. The morphology, microstructure, interface structure and the distribution of the in situ particles in the coatings were observed with optical microscope, scanning electron microscope and x-ray diffraction analysis. The results show that metallurgical bonding is obtained between coating and substrate, and the microstructure of coatings is mainly composed of γ-Fe, (Fe,Cr,W,Nb)7C3 and AlFe particles which are synthesized in stiu, are dispersivly distributed in the coatings. The micro-hardness gradually increased from bottom to the top of the coating, the maximum is 986 Hv0.1, about 4 times larger than that of the steel substrate.


2011 ◽  
Vol 696 ◽  
pp. 156-161 ◽  
Author(s):  
Somrerk Chandra-ambhorn ◽  
Tanongsak Somphakdee ◽  
Walairat Chandra-Ambhorn

Thin slab interested in this work was the one with the thickness of ca. 50 mm and mainly made from recycled steel. Chemical composition of the studied steel strip produced from such slab was Fe with 0.077 wt% C, 0.233 wt% Mn, 0.191 wt% Si, 0.159 wt% Cu and 0.052 wt% Ni. Scale retained on that steel after hot rolling was studied. The hot-rolled sample was pickled in 10%v/v HCl aqueous solution at 80 °C. Weight loss and relative XRD peaks of hematite-per-iron and magnetite-per-iron were measured at different pickling periods of time. It was observed that the as-received scale was crack-free. Hematite-and-iron ratio approached zero at the pickling time of 3 seconds. Magnetite-per-iron ratio gradually decreased with increased pickling time and approached zero later. These results indicated that pickling solution attacked the outermost hematite layer resulting in removing of this layer first. Sublayers of scale consisting of magnetite were completely pickled later. Pickling behaviour was not merely volumetric since scale was crack-free. Mechanical adhesion of scale on steel substrate was additionally investigated by tensile test to help characterise the oxide scale.


2018 ◽  
Vol 21 (1) ◽  
pp. 82
Author(s):  
Mofeed A. Jaleel ◽  
Eilaf Z. Gurji

The Electrodeposition process has been used to prepare Nickel-Tungsten alloys on low carbon steel substrate by using ammonical citrate bath. The influence of deposition condition by variation of current density (0.04-0.2 A/cm2) and solution temperature (60-70 °C), on the microstructure was studied. The optical microscope and the scanning electron microscopy (SEM) were used to study the morphology of the deposit while the energy dispersive spectroscopy (EDS) was used to approximate the composition, in addition to X-Ray diffraction examination. The results show that the current efficiency has the major influence on the tungsten content in the alloys due to the formation of ternary complex which reflected into the properties of the deposit. Keywords: 


2001 ◽  
Vol 47 (3-4) ◽  
pp. 275-282 ◽  
Author(s):  
P.C Zambrano ◽  
M.P Guerrero ◽  
R Colás ◽  
L.A Leduc

1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Alloy Digest ◽  
1972 ◽  
Vol 21 (8) ◽  

Abstract AISI 1015 is a low-carbon steel used in the annealed, cold-worked, hot-rolled or normalized condition for general purpose construction and engineering. It is also used for case-hardened components. It combines good machinability, good workability and good weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-48. Producer or source: Carbon steel mills.


2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document