scholarly journals The Microstructure Properties of Ni-W Alloy Electrodeposition

2018 ◽  
Vol 21 (1) ◽  
pp. 82
Author(s):  
Mofeed A. Jaleel ◽  
Eilaf Z. Gurji

The Electrodeposition process has been used to prepare Nickel-Tungsten alloys on low carbon steel substrate by using ammonical citrate bath. The influence of deposition condition by variation of current density (0.04-0.2 A/cm2) and solution temperature (60-70 °C), on the microstructure was studied. The optical microscope and the scanning electron microscopy (SEM) were used to study the morphology of the deposit while the energy dispersive spectroscopy (EDS) was used to approximate the composition, in addition to X-Ray diffraction examination. The results show that the current efficiency has the major influence on the tungsten content in the alloys due to the formation of ternary complex which reflected into the properties of the deposit. Keywords: 

Author(s):  
Mofeed A. Jaleel ◽  
Eilaf Z. Gurji

The Electrodeposition process has been used to substrate Ni-W alloy on low carbon steel by using ammonical citrate bath. The influence of deposition condition by variation of current density (0.04-0.2 A/cm2) and solution temperature (60-70 °C), on the mechanical and chemical properties such as (microhardness, wear resistance, residual stress and chemical resistance) was studied. Results show that the current efficiency has the major influence on the tungsten content in the alloys which reflected to the properties of the deposits.


2011 ◽  
Vol 179-180 ◽  
pp. 253-256
Author(s):  
Hao Chen ◽  
Jian Gao Yang ◽  
Mi Song Chen

The Fe-based composite coatings were formed by plasma jet surface metallurgy using Fe, C, W, Cr and Al alloy powders on the low carbon steel. The morphology, microstructure, interface structure and the distribution of the in situ particles in the coatings were observed with optical microscope, scanning electron microscope and x-ray diffraction analysis. The results show that metallurgical bonding is obtained between coating and substrate, and the microstructure of coatings is mainly composed of γ-Fe, (Fe,Cr,W,Nb)7C3 and AlFe particles which are synthesized in stiu, are dispersivly distributed in the coatings. The micro-hardness gradually increased from bottom to the top of the coating, the maximum is 986 Hv0.1, about 4 times larger than that of the steel substrate.


2011 ◽  
Vol 696 ◽  
pp. 170-175 ◽  
Author(s):  
Komsan Ngamkham ◽  
Satian Niltawach ◽  
Somrerk Chandra-ambhorn

Hot-rolled low carbon steel strips were produced using two different finishing temperatures at 910 and 820 °C in an industrial hot-rolling line. Mechanical adhesion of scale on the steel substrate at 40 mm from the edge was investigated by tensile test. It was found that the strain initiating the first spallation of scale produced at higher finishing temperature was lower. Spallation ratio which is a spalled area of scale divided by the total area of scale examined under an optical microscope was steeper when the scale was produced at higher finishing temperature. The lower values of strain initiating the first spallation and the higher values of spallation ratio of scale formed both at higher finishing temperature were due to higher thickness of that scale. Pickling behaviour of the hot-rolled steels was investigated by immersing the studied steels in a 10%v/v HCl solution at 80 °C. X-ray diffraction (XRD) peak of hematite relative to that of iron decreased with pickling time and approached zero during pickling periods from 3 to 10 s, while magnetite-and-iron ratio gradually decreased and tended to be zero at longer pickling time. This might indicate the existence of hematite as the outermost layer of scale and subscale containing magnetite as the inner part.


2013 ◽  
Vol 395-396 ◽  
pp. 712-717 ◽  
Author(s):  
Yu Deng ◽  
Sheng Fu Yu ◽  
Ning Yan ◽  
Shu Le Xing ◽  
Lin Bing Huang

4Cr13 martensitic stainless steel coatings with different amount of V/Nb were prepared on the surface of the Q235 low-carbon steel by high velocity arc spraying (HVAS). The microstructure and properties of the coatings were characterized and tested by scanning electron microscope (SEM), X-ray diffraction (XRD), optical microscope, microhardness tester and wear tester. And the wear mechanisms of the coatings have been studied. The results showed that optimal percentage of V/Nb could improve performance of the coatings. The coatings had good forming properties, uniformity of microstructure and compact structure.The highest value of adhesion strength was up to about 36.80 Mpa. The hard particles could incease the hardness and wear resistanc of the coatings.The average microhardness was about 523 HV0.1, higher than that of 4Cr13 coatings, and the abrasive wear resiatance was enhanced because of the added elements V and Nb. Key words: alloying coatings; 4Cr13; V/Nb; high velocity arc spraying (HVAS); abrasive behaviour


2015 ◽  
Vol 228 ◽  
pp. 108-115
Author(s):  
B. Łosiewicz ◽  
Magdalena Popczyk

Co-deposition process of amorphous nickel and PTFE particles in the presence of Ni (OH)2carrier suspended in the bath by magnetic stirring, was investigated. Composite Ni-P+Ni (OH)2+PTFE coatings and comparative Ni-P deposits, were electrodeposited on low carbon steel substrate under galvanostatic conditions at room temperature. The physical and chemical characterization of the coatings was carried out using X-Ray diffraction analysis and microanalysis, stereometric quantitative microscopy and atomic absorption spectroscopy. The optimum production conditions of the composite coatings based on the Ni-P matrix into which PTFE and Ni (OH)2components can be embedded uniformly, were found.


2021 ◽  
Vol 800 ◽  
pp. 140249
Author(s):  
Juan Macchi ◽  
Steve Gaudez ◽  
Guillaume Geandier ◽  
Julien Teixeira ◽  
Sabine Denis ◽  
...  

2013 ◽  
Vol 734-737 ◽  
pp. 2269-2272
Author(s):  
Hong Mei Zhu ◽  
Shu Mei Lei ◽  
Tong Chun Kuang

In this paper, a low carbon steel was used as the substrate to prepare the carbon nanostructural materials by the oxygen-acetylene flame method. The experimental results show that the composite products including nodular carbon nanoparticles and amorphous carbon were obtained on the substrate after a mechanical polishing pretreatment. Comparatively, the short tubular carbon nanofibers with the diameter of around 100 nm were deposited on the substrate pretreated by dipping in the concentrated nitric acid solution. The possible mechanism for the growth of such carbon nanofibers was discussed.


2021 ◽  
Vol 886 ◽  
pp. 168-174
Author(s):  
Mohanad N. Al-Shroofy ◽  
Hanna A. Al-Kaisy ◽  
Rabab Chalaby

Powder spray coating was used for many applications such as paint decoration and protection against corrosive environments. The electrostatic spray method is used to lower the manufacturing cost and the environmental effect during the production process. It is done by electrostatic device and spray gun to create a layer on the substrate to play a protective role. Different dry powders were mixed to form a composite mixture consisted of Al2O3 and SiC or ZrSiO4 with Al powder as a binder. The powders mixture was deposited by electrostatic spray technique with a high voltage of 15 kV on a low carbon steel substrate of (40 x 10 x 4) mm in dimensions. Two groups of mixtures were used to form the coating layers. Powders of Al2O3 with (20 and 40) weight percent (wt%) of SiC as the first group and (20 and 40) wt% of ZrSiO4 as the second group were used. 5 wt% of Al powder was added as a binder, and the samples were heat treated at 900 C° for 2 hours. A detailed characterization of the composite coating layers was performed using XRD, SEM, and EDX, as well as, micro-hardness measurements. The obtained surface composite layers were smooth and having good particle distribution which leads to enhance roughness values (Ra). Furthermore, the hardness increased with increasing the amount of carbide and zirconia, and the obtained layers show no presence of defects or cracks.


MRS Advances ◽  
2017 ◽  
Vol 2 (50) ◽  
pp. 2809-2817
Author(s):  
Daniel S. Huerta ◽  
E.D. García Bustos ◽  
D.V. Melo Máximo ◽  
M. Flores Martinez

ABSTRACTIn the present work the kinetic growth is analyzed for a hard coating applied on a low carbon steel AISI 8620. A thermochemical treatment of bored with dehydrated paste at temperatures of 900, 950 and 1000 °C with a residence time of 2, 4, 6 and 8 h. The morphology and types of borides formed on the surface of the steel were evaluated by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The layer formed has a size of 20 to 113 μm which will be dependent on the process temperature, the treatment time and the alloy elements of the substrate. Hardness of 1493-1852 HV are presented for treatment times and temperatures established in this study. The kinetics of growth were determined and analyzed using a mathematical model of diffusion, evaluating the penetration of the biphasic layer that is determined as a function of the time and temperature of the thermochemical treatment (TCT). The results show the increase in the growth constants (k) with respect to the bored temperatures. The activity energy (Q) of the material AISI 8620 was also obtained.


Sign in / Sign up

Export Citation Format

Share Document