Caracteristics of TiN Coating Films for Large Sizes Prepared by Arc Ion Plating

2012 ◽  
Vol 706-709 ◽  
pp. 2589-2595
Author(s):  
Kyeong Cheol Baek ◽  
Chan Yeol Seo ◽  
Ki Bok Heo ◽  
Yang Soo Kim ◽  
Dong Joo Yoon ◽  
...  

Arc ion plating (AIP) is one of the most attractive physical vapour deposition (PVD) method for the industrial manufacture of TiN coatings, owing to a high degree of ionization in the target material and convenient control of the process parameters. The important characteristic of hard coating is the adhesion strength between the coating layer and the substrate. The coating will be subjected to various loads, such as mechanical, thermal load, etc., in practical applications. Therefore, for more than a decade, Ti-based hard coatings have been applied to tools, dies, and mechanical parts because of the enhance lifetime and performance. It is focus on the attractive properties such as high hardness, good wear, and chemical stability. In the present study, TiN monolayer film was prepared at various N2 partial pressures and current by the AIP technique in SACM645 material. The correlation between microstructure and properties of the TiN coating was comparatively investigated by XRD, FE-SEM and AFM. These study carried steadily out improve the adhesion properties and wear resistance of Ti-based coating using pre-treatment of the substrate, insertion of an interlayer, application of multi-layers and adjustment of the process parameters. The main phase FCC TiN displayed (200) orientation in the film with the highest N2partial pressure. The (111) orientation was observed with decreasing N2partial pressure. The (200) and (111) textures in the film which was treated 80A arc current were found to be competitive orientations, however stronger arc treated the (200) texture was increased. The multilayer TiN films has possessed high hardness (up to 42Nm) and the best wear resistance among the specimens. These features were attributed to the presence of dense microstructures that were mainly composed of TiN phase around 5.16㎛ thickness, HF1 adhesion and Ra 35㎚ surface roughness

2008 ◽  
Vol 373-374 ◽  
pp. 576-579
Author(s):  
Hui Li ◽  
H.B. Xu ◽  
Jin Zhang

In this paper, TiN coating was deposited onto the nitrided 32Cr2MoVA by multi arc ion plating and proceeded line contact fatigue experiment to investigate the influence of hard coatings on the contact failure properties of nitriding steel. The results of experiment show that pitting is primary type of contact fatigue failure for TiN coated 32Cr2MoV and the pits on the TiN coated surface are shallower and smaller than that of the nitrided 32Cr2MoV. After TiN coating produce crisping and desquamation under higher contact fatigue loads, the exposed matrix surface begin to bear the contact load. The superficial microstructure of TiN coated 32Cr2MoV was more fine, and content of nitrides were higher than that of the nitrided, which insured the distribution of hardness gradient of subsurface was more rational than that of nitrided 32Cr2MoV. The contact fatigue strength of TiN coated 32Cr2MoV is greater about 200MPa than that of the nitrided 32Cr2MoV.


2012 ◽  
Vol 184-185 ◽  
pp. 1167-1170
Author(s):  
Guang Yu Du ◽  
Zhen Tan ◽  
Kun Liu ◽  
Hao Chai ◽  
De Chun Ba

In this paper TiN coating was prepared on stainless steel substrate using arc ion plating technique. The coating samples’ phases, surface morphology, micro-determination chemical composition, loss factor and damping ratio were tested. The phases of TiN coating were determined by X-ray diffraction (XRD) technique. The surface morphology and chemical composition of the TiN coating were analyzed by scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS), respectively. The damping performance of the samples was measured by hammering activation according half power bandwidth method. The loss factor or damping ratio of samples were obtained according frequency response curve. The results showed that damping performance of samples was considerably improved by TiN coatings.


2003 ◽  
Vol 169-170 ◽  
pp. 336-339 ◽  
Author(s):  
Kyung-Hwang Lee ◽  
Yasushi Inoue ◽  
Hiroyuki Sugimura ◽  
Osamu Takai

2011 ◽  
Vol 258 (5) ◽  
pp. 1819-1825 ◽  
Author(s):  
Fei Cai ◽  
Shihong Zhang ◽  
Jinlong Li ◽  
Zhong Chen ◽  
Mingxi Li ◽  
...  

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Y. Yang ◽  
Y. Zhu ◽  
H. Yang

Abstract Selective laser melting (SLM) is a rapidly developing metal additive manufacturing technology. SLM process parameters have a direct impact on the microstructure of parts, which further affect wear behaviors. Increasing the wear resistance by tailoring process parameters, instead of postprocessing, is crucial for enhancing surface properties of the SLM-fabricated parts with complicated structures. In this study, 316L stainless steel samples were fabricated using different energy densities by varying hatch spacing and scanning speed. The relative density and hardness were measured, and the microstructures were examined. The wear resistance was evaluated by performing scratch tests. Results show that high hardness was found in the bottom region of the samples by small hatch spacings and the highest hardness of 302.8 ± 4.3 HV was measured in the sample by a hatch spacing of 10 μm. With the increase of energy density from 178 to 533 J/mm3 by reducing hatch spacing, the fraction of cellular structures decreases and columnar structures are more likely to be aligned in a relatively constant tilted angle from the build direction, which significantly improve the ability to resist slipping and deformation, indicated by 90.1%, 45.0%, and 15.7% reductions in wear rates under 1, 3, and 5 N, respectively. With the increase of energy density from 182 to 545 J/mm3 by reducing the scanning speed, the number of cellular structures increases but pores also form, which negatively affects wear resistance.


2011 ◽  
Vol 675-677 ◽  
pp. 1307-1310 ◽  
Author(s):  
Xiao Hong Yao ◽  
Bin Tang ◽  
Lin Hai Tian ◽  
Xiao Fang Li ◽  
Yong Ma

TiN coating with thickness of 2.5μm was deposited on high-speed steel (HSS) substrate by pulsed bias cathodic arc ion plating. The surface and cross-section morphologies, composition depth profile and phase structure were characterized by FESEM, GDOES and XRD, respectively. Scratch test for adhesion evaluation, microhardness test for hardness measurement, and potentiodynamic polarization for corrosion resistance test were used. The results show that the TiN coating exhibits smooth surface, dense columnar grain structure and an obviously preferred orientation of TiN(111). The adhesion of the coating to substrate is exceeded more than 100N. The hardness of the coating is about 26 GPa. The low corrosion current density (Icorr) and rather high corrosion potential (Ecorr) value imply that the TiN coating displays a good corrosion resistance in 0.5mol/l NaCl solution. However, pitting is still existed due to the defects in the coating.


Sign in / Sign up

Export Citation Format

Share Document