Reconstituted Extracellular Matrix Improve Osteoblastic Differentiation onto Titanium Surfaces

2012 ◽  
Vol 706-709 ◽  
pp. 584-588
Author(s):  
Lia Rimondini ◽  
Federica Demarosi ◽  
Ismaela Foltran ◽  
Nadia Quirici

Electrospinning technique is an efficient processing method to manufacture micro-and nanosized fibrous structures by electrostatic force for different applications. In biomaterial field, electrospinning technique has been successfully utilized to prepare new drug delivery materials and tissue engineering scaffolds. Fiber mats of biodegradable polymers having a diameter in the nanoto submicro-scale can be considered to mimic the nanofibrous structure of native extracellular matrix (ECM). Native extracellular matrix, constituted of proteins and polysaccharides improving cells growth in its nanofibrous porous structure, controls not only the cell phenotype, but the whole structure of the biological tissues. In the present study we investigated the effect of electrospun reconstituted collagen fibers onto metals for oral implants devices manufacturing as far as the osteoblastic differentiation potential of stem cells and cytofunctionality of osteoblasts in-vitro. The cells cultured onto titanium samples coated with ECM constituents showed faster osteoblastic differentiation and more efficient deposition of mineralized matrix in comparison with those onto uncoated substrates.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Hoda El-Kehdy ◽  
Guillaume Pourcher ◽  
Wenwei Zhang ◽  
Zahia Hamidouche ◽  
Sylvie Goulinet-Mainot ◽  
...  

In line with the search of effective stem cell population that would progress liver cell therapy and because the rate and differentiation potential of mesenchymal stem cells (MSC) decreases with age, the current study investigates the hepatogenic differentiation potential of human fetal liver MSCs (FL-MSCs). After isolation from 11-12 gestational weeks’ human fetal livers, FL-MSCs were shown to express characteristic markers such as CD73, CD90, and CD146 and to display adipocytic and osteoblastic differentiation potential. Thereafter, we explored their hepatocytic differentiation potential using the hepatogenic protocol applied for adult human liver mesenchymal cells. FL-MSCs differentiated in this way displayed significant features of hepatocyte-like cells as demonstratedin vitroby the upregulated expression of specific hepatocytic markers and the induction of metabolic functions including CYP3A4 activity, indocyanine green uptake/release, and glucose 6-phosphatase activity. Following transplantation, naive and differentiated FL-MSC were engrafted into the hepatic parenchyma of newborn immunodeficient mice and differentiatedin situ. Hence, FL-MSCs appeared to be interesting candidates to investigate the liver development at the mesenchymal compartment level. Standardization of their isolation, expansion, and differentiation may also support their use for liver cell-based therapy development.


2006 ◽  
Vol 103 (8) ◽  
pp. 2488-2493 ◽  
Author(s):  
N. Datta ◽  
Q. P. Pham ◽  
U. Sharma ◽  
V. I. Sikavitsas ◽  
J. A. Jansen ◽  
...  

Biomaterials ◽  
2005 ◽  
Vol 26 (9) ◽  
pp. 971-977 ◽  
Author(s):  
Néha Datta ◽  
Heidi L. Holtorf ◽  
Vassilios I. Sikavitsas ◽  
John A. Jansen ◽  
Antonios G. Mikos

2012 ◽  
Vol 1418 ◽  
Author(s):  
Chong Wang ◽  
Min Wang ◽  
Xiao-Yan Yuan

ABSTRACTElectrospinning is a versatile technique for fabricating three-dimensional (3D) nanofibrous scaffolds and the scaffolds have been found to elicit desirable cellular behavior for tissue regeneration because the nanofibrous structures mimic the nanofibrous extracellular matrix (ECM) of biological tissues. From the material point of view, the ECM of bone is a nanofibrous nanocomposite consisting of an organic matrix (mainly collagen) and inorganic bone apatite nanoparticles. Therefore, for bone tissue engineering scaffolds, it is natural to construct nanofibrous nanocomposites having a biodegradable polymer matrix and nanosized bioactive bioceramics. Our previous studies demonstrated: (1) electrospun nanocomposite fiber loaded with calcium phosphate (Ca-P) were osteoconductive and could promote osteoblastic cell proliferation and differentiation better than pure polymer fibers; (2) The controlled release of recombinant human bone morphogenetic protein (rhBMP-2) from scaffolds provided the scaffolds with desired osteoinductivity. In the current investigation, novel bicomponent scaffolds for bone tissue engineering were produced using our established dual-source dual-power electrospinning technique to achieve both osteoconductivity and osteoinductivity. In the bicomponent scaffolds, one fibrous component was electrospun Ca-P/PLGA nanocomposite fibers and the other component was emulsion electrospun PDLLA nanofibers incorporated with rhBMP-2. Through electrospinning optimization, both fibers were evenly distributed in bicomponent scaffolds. The mass ratio of rhBMP-2/PDLLA fibers to Ca-P/PLGA fibers in bicomponent scaffolds could be controlled using multiple syringes. The structure and morphology of mono- and bicomponent scaffolds were examined. The in vitro release of rhBMP-2 from mono- and bicomponent scaffolds showed different release amount but similar release profile, exhibiting an initial burst release. Blending PDLLA with polyethylene glycol (PEG) could reduce the initial burst release of rhBMP-2.


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 869-876 ◽  
Author(s):  
Selim Kuçi ◽  
Johannes T. Wessels ◽  
Hans-Jörg Bühring ◽  
Karin Schilbach ◽  
Michael Schumm ◽  
...  

Abstract Here we describe the in vitro generation of a novel adherent cell fraction derived from highly enriched, mobilized CD133+ peripheral blood cells after their culture with Flt3/Flk2 ligand and interleukin-6 for 3 to 5 weeks. These cells lack markers of hematopoietic stem cells, endothelial cells, mesenchymal cells, dendritic cells, and stromal fibroblasts. However, all adherent cells expressed the adhesion molecules VE-cadherin, CD54, and CD44. They were also positive for CD164 and CD172a (signal regulatory protein-α) and for a stem cell antigen defined by the recently described antibody W7C5. Adherent cells can either spontaneously or upon stimulation with stem cell factor give rise to a transplantable, nonadherent CD133+CD34−stem cell subset. These cells do not generate in vitro hematopoietic colonies. However, their transplantation into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice induced substantially higher long-term multilineage engraftment compared with that of freshly isolated CD34+ cells, suggesting that these cells are highly enriched in SCID-repopulating cells. In addition to cells of the myeloid lineage, nonadherent CD34− cells were able to give rise to human cells with B-, T-, and natural killer–cell phenotype. Hence, these cells possess a distinct in vivo differentiation potential compared with that of CD34+ stem cells and may therefore provide an alternative to CD34+ progenitor cells for transplantation.


Cytotherapy ◽  
2009 ◽  
Vol 11 (6) ◽  
pp. 793-803 ◽  
Author(s):  
Laura de Girolamo ◽  
Silvia Lopa ◽  
Elena Arrigoni ◽  
Matteo F. Sartori ◽  
Franz W. Baruffaldi Preis ◽  
...  

Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


Sign in / Sign up

Export Citation Format

Share Document