Influence of Microstructure on Damage in Advanced High Strength Steels

2012 ◽  
Vol 706-709 ◽  
pp. 925-930 ◽  
Author(s):  
Frank Hisker ◽  
Richard Thiessen ◽  
Thomas Heller

AHSS (Advanced High Strength Steels) combine high strength and good ductility. Their outstanding forming and work-hardening behavior predestines these steels for fabrication of strength relevant structural elements and automobile body parts. To characterize a material, not only tensile, but also hole-expansion and bending behavior are important and help predict the stretch-flange-formability. In this study, detailed analyses of the correlation between these three tests and the damage mechanisms during forming have been performed for selected steels. The results show that for AHSS one should differentiate between “local” and “global” failure. Furthermore, not only are certain materials more sensitive to local or global damage, but also various testing methods tend to provoke either local or global damage. Tensile testing provokes global failure whereas hole-expansion tends to induce local failure. A specimen fails during bending with a mixture of local and global modes. These failure modes are strongly attributed to the microstructure. DP-steels yield high elongation during tensile testing and poorer hole-expansion values. High-resolution EBSD has revealed that the microstructure of DP-steels is sensitive to localized damage, which is compensated by work-hardening around damaged regions and thus shifts the loading to un-hardened regions. This makes DP-microstructures well-suited to tensile loading but sensitive to hole-expansion. CP-steels of comparable strength show poorer tensile elongation and higher hole-expansion ratios due to a microstructure which is not sensitive to localized failure (but has limited capacity for work-hardening). The failure mode in TRIP-steels exhibits a similar character as in DP-steels, but only after the martensitic transformation of retained austenite.

2006 ◽  
Vol 514-516 ◽  
pp. 579-583 ◽  
Author(s):  
Nuno Peixinho ◽  
António Pinho

This work presents results of tensile testing of advanced high strength steels of interest for crashworthy structures: Dual-Phase and TRIP (Transformation Induced Plasticity) steels. The improvements in vehicle crashworthiness observed in recent years have been closely linked to advanced high-strength steels that are currently being produced or in process of development. Amongst these, Dual-Phase and TRIP steels have presented excellent properties for use in crashworthy structures. For these steel grades an understanding of material behaviour at relevant strain rates is needed as well as constitutive equations suitable for use in analytic and numerical calculations. For that purpose an experimental program of tensile testing was performed in a range of strain rates of interest for crashworthiness problems: 0.0001 /s to 1000 /s. The test results were used to compare material properties and to evaluate the Cowper-Symonds constitutive equation and a modified version. Crush tests were performed at different speeds for top-hat and hexagonal tubes manufactured using laser welding and the results discussed in view of energy absorption.


Author(s):  
Ji Hyun Sung ◽  
Ji Hoon Kim ◽  
R. H. Wagoner

Unpredicted sheet forming failures of dual-phase (DP) steels can occur in regions of high curvature and with little apparent necking. Such failures are often referred to as “shear fractures”. In order to reproduce such fractures in a laboratory setting, and to understand their origin and the inability to predict them, a novel draw-bend formability (DBF) test was devised using dual displacement rate control. DP steels from several suppliers, with tensile strengths ranging from 590 to 980 MPa, were tested over a range of rates and bend ratios (R/t) along with a TRIP (transformation induced plasticity) steel for comparison. The new test reliably reproduced three kinds of failures identified as types 1, 2, and 3, corresponding to tensile failure, transitional failure, and shear fracture, respectively. The type of failure depends on R/t and strain rate, and presumably on the initial specimen width, which was constant in this study. Two critical factors influencing the lack of accurate failure prediction were identified. The dominant one is deformation-induced heating, which is particularly significant for advanced high strength steels because of their high energy product. Temperature rises of up to 100 deg. C were observed. This factor reduces formability at higher strain rates, and promotes a transition from types 1 to 3. The second factor is related to microstructural features. It was significant in only one material in one test direction (of 11 tested) and only for this case was the local fracture strain different from that in a tensile failure. Alternate measures for assessing draw-bend formability were introduced and compared. They can be used to rank the formability of competing materials and to detect processing problems that lead to unsuitable microstructures.


2020 ◽  
Vol 224 (2) ◽  
pp. 217-233 ◽  
Author(s):  
Vivek Kumar Barnwal ◽  
Shin-Yeong Lee ◽  
Seong-Yong Yoon ◽  
Jin-Hwan Kim ◽  
Frédéric Barlat

2013 ◽  
Vol 455 ◽  
pp. 173-178 ◽  
Author(s):  
Mei Zhang ◽  
Yu Xiang Ning ◽  
Jun Zhang ◽  
Zi Wan ◽  
Tao Wang

800MPa grade Advanced High Strength Steels (AHSS), including Complex Phase steel CP800 and Ferrite-Bainite steel FB800, were chosen to test the forming performance in different test conditions and compared with the reference traditional high strength low alloy (HSLA) steels HR700LA. Tensile test, hole expansion (HE) test, and HAT shape stamping test were taken to investigate the forming performance of the materials. Test results indicated that the studied 800MPa grade AHSS showed a better strength ductility balance compared with the reference steel. Among all the steels researched, FB800 showed the best hole expansion ratio (HER), and CP800 the worst. Springback angles of AHSS after HAT shape stamping tests were markedly smaller than those of HR700LA steels, though the springback angles of HR700LA decreased continuously with blank holding force (BHF) increasing. Steel FB800, CP800S and CP800B had much better shape stability compared with steels HR700LA. AHSS showed much smaller springback behavior under the same stamping condition, especially for steels CP800-B, FB800-2 and FB800-1. When increasing the BHF to 100KN, AHSS showed the largest springback deformation. Among the three kinds of CP800 steels researched, steel CP800-B indicated outstanding springback restrain trend in BHF further increasing attempt. So, springback behavior could be restricted obviously by using a larger BHF in AHSS CP800B forming operations.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 782
Author(s):  
Dwaipayan Mallick ◽  
Nicolas Mary ◽  
V. S. Raja ◽  
Bernard Normand

This study deals with microstructural influence on the H permeation behavior of Dual-Phase (DP) and Complex Phase (CP) steels using electrochemical permeation studies. The H diffusion coefficients in DP steels (DP800: 1.65 × 10−10 m2·s−1, DP1000: 1.58 × 10−10 m2·s−1) are half of that found in CP steels (3.07 × 10−10 m2·s−1).The banded microstructure along the specimen thickness and higher C content of the DP led to high H diffusivity of DP steels. The lower total H concentration along with a higher fraction of H was present in the stronger traps in CP steels suggest a better HE resistance of this steel. The H distribution in the specimens was non-uniform, with a higher H concentration speculated near the charging surface.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4970
Author(s):  
Jacqueline Noder ◽  
Jon Edward Gutierrez ◽  
Amir Zhumagulov ◽  
James Dykeman ◽  
Hesham Ezzat ◽  
...  

While the third generation of advanced high-strength steels (3rd Gen AHSS) have increasingly gained attention for automotive lightweighting, it remains unclear to what extent the developed methodologies for the conventional dual-phase (DP) steels are applicable to this new class of steels. The present paper provides a comprehensive study on the constitutive, formability, tribology, and fracture behavior of three commercial 3rd Gen AHSS with an ultimate strength level ranging from 980 to 1180 MPa which are contrasted with two DP steels of the same strength levels and the 590R AHSS. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then evaluated in 3D simulations of tensile tests. In general, the strain rate sensitivity of the two 3rd Gen 1180 AHSS was significantly different as one grade exhibited larger transformation-induced behavior. The in-plane formability of the three 1180 MPa steels was similar but with a stark contrast in the local formability whereas the opposite trend was observed for the 3rd Gen 980 and the DP980 steel. The forming limit curves could be accurately predicted using the experimentally measured hardening behavior and the deterministic modified Bressan–Williams through-thickness shear model or the linearized Modified Maximum Force Criterion. The resistance to sliding of the three 3rd Gen AHSS in the Twist Compression Test revealed a comparable coefficient of friction to the 590R except for the electro-galvanized 3rd Gen 1180 V1. An efficient experimental approach to fracture characterization for AHSS was developed that exploits tool contact and bending to obtain fracture strains on the surface of the specimen by suppressing necking. Miniature conical hole expansion, biaxial punch tests, and the VDA 238-100 bend test were performed to construct stress-state dependent fracture loci for use in forming and crash simulations. It is demonstrated that, the 3rd Gen 1180 V2 can potentially replace the DP980 steel in terms of both the global and local formability.


Sign in / Sign up

Export Citation Format

Share Document