Experimental Analysis of Laser Micro-Machining Process Parameters

2012 ◽  
Vol 713 ◽  
pp. 67-72
Author(s):  
Daniel Teixidor ◽  
I. Ferrer ◽  
Joaquim de Ciurana

This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying different process parameter. Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

Author(s):  
Qiang Guo ◽  
Yan Jiang ◽  
Zhibo Yang ◽  
Fei Yan

As a key factor, the accuracy of the instantaneous undeformed thickness model determines the force-predicting precision and further affects workpiece machining precision in the micro-milling process. The runout with five parameters affects the machining process more significantly compared with macro-milling. Furthermore, modern industry uses cutters with non-uniform pitch and helix angles more and more common for their excellent properties. In this article, an instantaneous undeformed thickness model is presented regarding cutter runout, variable pitch, and helix angles in the micro-milling process. The cutter edge with the cutter runout effect is modeled. Then, the intersecting ellipse between the plane vertical to the spindle axis and the cutter surface which is a cylinder can be gained. Based on this, the points, which are used to remove the material, on the ellipse as well as cutter edges are calculated. The true trochoid trajectory for each cutting point along the tool path is built. Finally, the instantaneous undeformed thickness values are computed using a numerical algorithm. In addition, this article analyzes runout parameters’ effects on the instantaneous undeformed thickness values. After that, helix and pitch angles’ effects on the instantaneous undeformed thickness are studied. Ultimately, the last section verifies the correctness and validity of the instantaneous undeformed thickness model based on the experiment conducted in the literature.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 289 ◽  
Author(s):  
Antonio Rubio-Mateos ◽  
Asuncion Rivero ◽  
Eneko Ukar ◽  
Aitzol Lamikiz

In finishing processes, the quality of aluminum parts is mostly influenced by static and dynamic phenomena. Different solutions have been studied toward a stable milling process attainment. However, the improvements obtained with the tuning of process parameters are limited by the system stiffness and external dampers devices interfere with the machining process. To deal with this challenge, this work analyzes the suitability of elastomer layers as passive damping elements directly located under the part to be machined. Thus, exploiting the sealing properties of nitrile butadiene rubber (NBR), a suitable flexible vacuum fixture is developed, enabling a proper implementation in the manufacturing process. Two different compounds are characterized under axial compression and under finishing operations. The compression tests present the effect of the feed rate and the strain accumulative effect in the fixture compressive behavior. Despite the higher strain variability of the softer rubber, different milling process parameters, such as the tool feed rate, can lead to a similar compressive behavior of the fixture regardless the elastomer hardness. On the other hand, the characterization of these flexible fixtures is completed over AA2024 floor milling of rigid parts and compared with the use of a rigid part clamping. These results show that, as the cutting speed and the feed rate increases, due to the strain evolution of the rubber, the part quality obtained tend to equalize between the flexible and the rigid clamping of the workpiece. Due to the versatility of the NBR for clamping different part geometries without new fixture redesigns, this leads to a competitive advantage of these flexible solutions against the classic rigid vacuum fixtures. Finally, a model to predict the grooving forces with a bull-nose end mill regardless of the stiffness of the part support is proposed and validated for the working range.


Author(s):  
M. Kishanth ◽  
P. Rajkamal ◽  
D. Karthikeyan ◽  
K. Anand

In this paper CNC end milling process have been optimized in cutting force and surface roughness based on the three process parameters (i.e.) speed, feed rate and depth of cut. Since the end milling process is used for abrading the wear caused is very high, in order to reduce the wear caused by high cutting force and to decrease the surface roughness, the optimization is much needed for this process. Especially for materials like aluminium 7010, this kind of study is important for further improvement in machining process and also it will improve the stability of the machine.


2014 ◽  
Vol 592-594 ◽  
pp. 2733-2737 ◽  
Author(s):  
G. Harinath Gowd ◽  
K. Divya Theja ◽  
Peyyala Rayudu ◽  
M. Venugopal Goud ◽  
M .Subba Roa

For modeling and optimizing the process parameters of manufacturing problems in the present days, numerical and Artificial Neural Networks (ANN) methods are widely using. In manufacturing environments, main focus is given to the finding of Optimum machining parameters. Therefore the present research is aimed at finding the optimal process parameters for End milling process. The End milling process is a widely used machining process because it is used for the rough and finish machining of many features such as slots, pockets, peripheries and faces of components. The present work involves the estimation of optimal values of the process variables like, speed, feed and depth of cut, whereas the metal removal rate (MRR) and tool wear resistance were taken as the output .Experimental design is planned using DOE. Optimum machining parameters for End milling process were found out using ANN and compared to the experimental results. The obtained results provβed the ability of ANN method for End milling process modeling and optimization.


Author(s):  
Xinyu Liu ◽  
Weihang Zhu ◽  
Victor Zaloom

This paper presents a multi-objective optimization study for the micro-milling process with adaptive data modeling based on the process simulation. A micro-milling machining process model was developed and verified through our previous study. Based on the model, a set of simulation data was generated from a factorial design. The data was converted into a surrogate model with adaptive data modeling method. The model has three input variables: axial depth of cut, feed rate and spindle speed. It has two conflictive objectives: minimization of surface location error (which affects surface accuracy) and minimization of total tooling cost. The surrogate model is used in a multi-objective optimization study to obtain the Pareto optimal sets of machining parameters. The visual display of the non-dominated solution frontier allows an engineer to select a preferred machining parameter in order to get a lowest cost solution given the requirement from tolerance and accuracy. The contribution of this study is to provide a streamlined methodology to identify the preferred best machining parameters for micro-milling.


2021 ◽  
Author(s):  
Naser Haghbin

Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. This thesis develops methodologies to predict the shape of micro-channels milled using high pressure abrasive water jets, and presents a new high pressure abrasive slurry jet micro-machining process. Since abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris, the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances were compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of the stagnation zone as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. It was also found that the erosive efficacy distribution changed suddenly after the initial formation of the channel. Then, a new surface evolution model was developed that predicts the size and shape of relatively deep micro-channels up to aspect ratios of 3 resulting from unsubmerged and iv submerged abrasive water jet micro-machining (AWJM) using a novel approach in which two different erosive efficacy expressions were sequentially applied. Since the channels produced by AWJM were found to be relatively wavy due to fluctuations in abrasive mass flow rate, a novel high pressure (water pump pressure up to 345 MPa) abrasive jet slurry micro-machining (HASJM) system was introduced by feeding a premixed slurry into the mixing chamber of a water jet machine with a micro-nozzle. Moreover, an existing model developed for AWJM abrasive particle velocities was modified and used to predict the particle velocity in HASJM, and then verified using a double disc apparatus (DDA). The HASJM system was then used to study the effect of entrained air in abrasive water jet micro-machining (AWJM) by performing experiments at the same particle velocity and dose for the two systems. The centerline waviness, Wa, of micro-channels made in SS316L and Al60661-T6 using HASJM were typically 3.4 times lower than those made with AWJM using the same dose of particles due to the more constant abrasive flow rate provided by the HASJM provided. The centerline roughness, Ra was approximately the same in both processes at a traverse velocity of Vt=4572 mm/min and a nozzle angle of 90°. For micro-channels of a given depth, the widths of those made with HASJM were 25.6 % narrower than those produced with AWJM, mainly due to the wider jet that resulted from the entrained air in AWJM.


2021 ◽  
Author(s):  
Naser Haghbin

Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. This thesis develops methodologies to predict the shape of micro-channels milled using high pressure abrasive water jets, and presents a new high pressure abrasive slurry jet micro-machining process. Since abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris, the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances were compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of the stagnation zone as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. It was also found that the erosive efficacy distribution changed suddenly after the initial formation of the channel. Then, a new surface evolution model was developed that predicts the size and shape of relatively deep micro-channels up to aspect ratios of 3 resulting from unsubmerged and iv submerged abrasive water jet micro-machining (AWJM) using a novel approach in which two different erosive efficacy expressions were sequentially applied. Since the channels produced by AWJM were found to be relatively wavy due to fluctuations in abrasive mass flow rate, a novel high pressure (water pump pressure up to 345 MPa) abrasive jet slurry micro-machining (HASJM) system was introduced by feeding a premixed slurry into the mixing chamber of a water jet machine with a micro-nozzle. Moreover, an existing model developed for AWJM abrasive particle velocities was modified and used to predict the particle velocity in HASJM, and then verified using a double disc apparatus (DDA). The HASJM system was then used to study the effect of entrained air in abrasive water jet micro-machining (AWJM) by performing experiments at the same particle velocity and dose for the two systems. The centerline waviness, Wa, of micro-channels made in SS316L and Al60661-T6 using HASJM were typically 3.4 times lower than those made with AWJM using the same dose of particles due to the more constant abrasive flow rate provided by the HASJM provided. The centerline roughness, Ra was approximately the same in both processes at a traverse velocity of Vt=4572 mm/min and a nozzle angle of 90°. For micro-channels of a given depth, the widths of those made with HASJM were 25.6 % narrower than those produced with AWJM, mainly due to the wider jet that resulted from the entrained air in AWJM.


Author(s):  
Padmaja Tripathy ◽  
Kalipada Maity

This paper presents a modeling and simulation of micro-milling process with finite element modeling (FEM) analysis to predict cutting forces. The micro-milling of Inconel 718 is conducted using high-speed steel (HSS) micro-end mill cutter of 1mm diameter. The machining parameters considered for simulation are feed rate, cutting speed and depth of cut which are varied at three levels. The FEM analysis of machining process is divided into three parts, i.e., pre-processer, simulation and post-processor. In pre-processor, the input data are provided for simulation. The machining process is further simulated with the pre-processor data. For data extraction and viewing the simulated results, post-processor is used. A set of experiments are conducted for validation of simulated process. The simulated and experimental results are compared and the results are found to be having a good agreement.


Sign in / Sign up

Export Citation Format

Share Document