OBIC Measurements on Avalanche Diodes in 4H-SiC for the Determination of Impact Ionization Coefficients

2012 ◽  
Vol 717-720 ◽  
pp. 545-548 ◽  
Author(s):  
D.M. Nguyen ◽  
Christophe Raynaud ◽  
Mihai Lazar ◽  
Gontran Pâques ◽  
Sigo Scharnholz ◽  
...  

Optical Beam Induced Current (OBIC) measurements have been performed on 4H-SiC avalanche diodes with very thin and highly doped avalanche region. The light source used in this study is an Ar-laser with a wavelength of 351 nm which results in a mixed carrier injection. From these measurements, impact ionization coefficients for 4H-SiC have been extracted in the electric field range from 3 to 4.8 MV/cm. In combination with ionization coefficients in our previous paper extracted from diodes with lowly doped avalanche region, we propose a set of parameters of impact ionization coefficients for 4H-SiC, applicable to a wide electric field range.

2007 ◽  
Vol 556-557 ◽  
pp. 339-342 ◽  
Author(s):  
W.S. Loh ◽  
C. Mark Johnson ◽  
J.S. Ng ◽  
Peter M. Sandvik ◽  
Steve Arthur ◽  
...  

Hole initiated avalanche multiplication characteristics of 4H-SiC avalanche photodiodes have been studied. The diodes had n+-n-p SiC epitaxial layers grown on a p-type substrate. These 1 mm2 devices had very low dark currents and exhibited sharp breakdown at voltages of approximately 500V. The diodes multiplication characteristics appeared to be identical when the wavelength of the illuminating light from the top varied from 288 to 325nm, implying that almost pure hole initiated multiplication was occurring. The multiplication factor data were modelled using a local multiplication model with impact ionization coefficients of 4H-SiC reported by various authors. The impact ionization coefficients extracted from submicron devices by Ng et al. were found to give accurate predictions for multiplication factors within the uncertainties of the doping levels. This result suggests that their ionization coefficients can be applied to thicker bulk 4H-SiC structures.


2007 ◽  
Vol 556-557 ◽  
pp. 1007-1010 ◽  
Author(s):  
Christophe Raynaud ◽  
Daniel Loup ◽  
Phillippe Godignon ◽  
Raul Perez Rodriguez ◽  
Dominique Tournier ◽  
...  

High voltage SiC semiconductor devices have been successfully fabricated and some of them are commercially available [1]. To achieve experimental breakdown voltage values as close as possible to the theoretical value, i.e. value of the theoretical semi-infinite diode, it is necessary to protect the periphery of the devices against premature breakdown due to locally high electric fields. Mesa structures and junction termination extension (JTE) as well as guard rings, and combinations of these techniques, have been successfully employed. Each of them has particular drawbacks. Especially, JTE are difficult to optimize in terms of impurity dose to implant, as well as in terms of geometric dimensions. This paper is a study of the spreading of the electric field at the edge of bipolar diodes protected by JTE and field rings, by optical beam induced current.


2020 ◽  
Vol 92 (1) ◽  
pp. 10301
Author(s):  
Tat Lung Wesley Ooi ◽  
Pei Ling Cheang ◽  
Ah Heng You ◽  
Yee Kit Chan

In this work, Monte Carlo model is developed to investigate the avalanche characteristics of GaN and Al0.45Ga0.55N avalanche photodiodes (APDs) using random ionization path lengths incorporating dead space effect. The simulation includes the impact ionization coefficients, multiplication gain and excess noise factor for electron- and hole-initiated multiplication with a range of thin multiplication widths. The impact ionization coefficient for GaN is higher than that of Al0.45Ga0.55N. For GaN, electron dominates the impact ionization at high electric field while hole dominate at low electric field whereas Al0.45Ga0.55N has hole dominate the impact ionization at higher field while electron dominate the lower field. In GaN APDs, electron-initiated multiplication is leading the multiplication gain at thinner multiplication widths while hole-initiated multiplication leads for longer widths. However for Al0.45Ga0.55N APDs, hole-initiated multiplication leads the multiplication gain for all multiplication widths simulated. The excess noise of electron-initiated multiplication in GaN APDs increases as multiplication widths increases while the excess noise decreases as the multiplication widths increases for hole-initiated multiplication. As for Al0.45Ga0.55N APDs, the excess noise for hole-initiated multiplication increases when multiplication width increases while the electron-initiated multiplication increases with the same gradient at all multiplication widths.


2018 ◽  
Vol 924 ◽  
pp. 577-580 ◽  
Author(s):  
Dominique Planson ◽  
Besar Asllani ◽  
Hassan Hamad ◽  
Marie Laure Locatelli ◽  
Roxana Arvinte ◽  
...  

This paper presents OBIC measurements performed at near breakdown voltage on two devices with different JTE doses. Overcurrent has been measured either at the JTE periphery or at the P+ border. Such overcurrent is present due to the electric field enhancement near the breakdown voltage. This hypothesis is proved by the electroluminescence. TCAD simulation of two different JTE doses yielded similar results to the OBIC measurements.


Sign in / Sign up

Export Citation Format

Share Document