Differential Evolution Algorithm and Response Surface Methodology Applied to Turning Process Optimization

2012 ◽  
Vol 727-728 ◽  
pp. 1854-1859
Author(s):  
Marcelo N. Sousa ◽  
Fran S. Lobato ◽  
Ricardo A. Malagoni

Modern engineering problems are often composed by a large number of variables that must be chosen simultaneously for better design performance. The optimization of phenomenological model is an impossible task in terms of computational time. To improve this disadvantage, the Response Surface Methodology (RSM), defined as a collection of mathematical and statistical methods that are used to develop, to improve, or to optimize a product or process, is configured as important alternative to model real process. In the literature, different approaches based on optimization methods have been proposed to design system engineering. In this context, the Differential Evolution algorithm (DE) is a stochastic optimization method that is based on vector operations to improve a candidate solution with regard to a given measure of quality. For illustration purposes, in the present contribution the DE is applied to optimize multiple correlated responses in a turning process. As a case study, the turning process of the AISI 52100 hardened steel is examined considering three input factors: cutting speed, feed rate and depth of cut. The outputs considered were: the mixed ceramic tool life, processing cost per piece, cutting time, the total turning cycle time, surface roughness and the material removing rate. The optimization of cutting speed, feed rate and depth of cut indicate the better configuration of process to minimize the cost.

2015 ◽  
Vol 761 ◽  
pp. 267-272
Author(s):  
Basim A. Khidhir ◽  
Ayad F. Shahab ◽  
Sadiq E. Abdullah ◽  
Barzan A. Saeed

Decreasing the effect of temperature, surface roughness and vibration amplitude during turning process will improve machinability. Mathematical model has been developed to predict responses of the surface roughness, temperature and vibration in relation to machining parameters such as the cutting speed, feed rate, and depth of cut. The Box-Behnken First order and second-order response surface methodology was employed to create a mathematical model, and the adequacy of the model was verified using analysis of variance. The experiments were conducted on aluminium 6061 by cemented carbide. The direct and interaction effect of the machining parameters with responses were analyzed. It was found that the feed rate, cutting speed, and depth of cut played a major role on the responses, such as the surface roughness and temperature when machining mild steel AISI 1018. This analysis helped to select the process parameters to improve machinability, which reduces cost and time of the turning process.


Author(s):  
Neelesh Ku. Sahu ◽  
A. B. Andhare

Surface roughness is an important surface integrity parameter for difficult to cut alloys such as Titanium alloys (Ti-6Al-4V). In the present work, initially a mathematical model is developed for predicting surface roughness for turning operation using Response Surface Methodology (RSM). Later, a recently developed advanced optimization algorithm named as Teaching Learning Based Optimization (TLBO) is used for further parameter optimization of the equation developed using RSM. The design of experiments was performed using central composite design (CCD). Analysis of variance (ANOVA) demonstrated the significant and non-significant parameters as well as validity of predicted model. RSM describes the effect of main and mixed (interaction) variables on the surface roughness of titanium alloys. RSM analysis over experimental results showed that surface roughness decreased as cutting speed increased whereas it increased with increase in feed rate. Depth of cut had no effect on surface roughness. By comparing the predicted and measured values of surface roughness the maximum error was found to be 7.447 %. It indicates that the developed model can be effectively used to predict the surface roughness. Further optimization of the roughness equation was carried out by TLBO method. It gave minimum surface roughness as 0.3120 μm at the cutting speed of 1704 RPM (171.217 m/min), feed rate of 55.6 mm/min (.033 mm/rev) and depth of cut of 0.7 mm. These results were confirmed by confirmation experiment and were better than that of RSM.


2020 ◽  
Vol 38 (6A) ◽  
pp. 887-895
Author(s):  
Hind H. Abdulridha ◽  
Aseel J. Haleel ◽  
Ahmed A. Al-duroobi

The main objective of this paper is to develop a prediction model using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) for the turning process of Aluminum alloy 6061 round rod. The turning experiments carried out based on the Central Composite Design (CCD) of Response Surface Methodology. The influence of three independent variables such as Cutting speed (150, 175 and 200 mm/ min), depth of cut (0.5, 1 and 1.5 mm) and feed rate (0.1, 0.2 and 0.3 mm/rev) on the Surface Roughness (Ra) were analyzed through analysis of variance (ANOVA). The response graphs from the Analysis of Variance (ANOVA) present that feed-rate has the strongest influence on Ra dependent on cutting speed and depth of cut. Surface response methodology developed between the machining parameters and response and confirmation experiments reveals that the good agreement with the regression models. The coefficient of determination value for RSM model is found to be high (R2 = 0.961). It indicates the goodness of fit for the model and high significance of the model. From the result, the maximum error between the experimental value and ANN model is less than the RSM model significantly. However, if the test patterns number will be increased then this error can be further minimized. The proposed RSM and ANN prediction model sufficiently predict Ra accurately. However, ANN prediction model is found to be better compared to RSM model. The artificial neutral network is applied to experimental results to find prediction results for two response parameters. The predicted results taken from ANN show a good agreement between experimental and predicted values with the mean squared error of training indices equal to (0.000) which produces flexibility to the manufacturing industries to select the best setting based on applications.


2018 ◽  
Vol 5 ◽  
pp. 5 ◽  
Author(s):  
Pralhad B. Patole ◽  
Vivek V. Kulkarni

This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.


2012 ◽  
Vol 445 ◽  
pp. 90-95
Author(s):  
Hamed Barghikar ◽  
Amin Poursafar ◽  
Abbas Amrollahi

The surface roughness model in the turning of 34CrMo4 steel was developed in terms of cutting speed, feed rate and depth of cut and tool nose radius using response surface methodology. Machining tests were carried out using several tools with several tool radius under different cutting conditions. The roughness equations of cutting tools when machining the steels were achieved by using the experimental data. The results are presented in terms of mean values and confidence levels.The established equation and graphs show that the feed rate and cutting speed were found to be main influencing factor on the surface roughness. It increased with increasing the feed rate and depth of cut, but decreased with increasing the cutting speed, respectively. The variance analysis for the second-order model shows that the interaction terms and the square terms were statistically insignificant. However, it could be seen that the first-order affect of feed rate was significant while cutting speed and depth of cut was insignificant.The predicted surface roughness model of the samples was found to lie close to that of the experimentally observed ones with 95% confident intervals.


2012 ◽  
Vol 217-219 ◽  
pp. 1567-1570
Author(s):  
A.K.M. Nurul Amin ◽  
Muammer Din Arif ◽  
Syidatul Akma Sulaiman

Chatter is detrimental to turning operations and leads to inferior surface topography, reduced productivity, dimensional accuracy, and shortened tool life. Avoidance of chatter has mostly been through reliance on heuristics such as: limiting material removal rates or selecting low spindle speeds and shallow depth of cuts. But, modern industries demand increased output and not steady operational limits. Various research efforts have therefore focused on developing mathematical models for chatter formation. However, as yet there is no existent model that meets all experimental verification. This research employed a novel technique based on the synergy of statistical modeling and experimental investigations in order to develop an effective empirical mathematical model for chatter amplitude and to subsequently find optimal machining conditions. Ti-6Al-4V, Titanium alloy, was used as the work-piece due to its increased popularity in applications related to aerospace, automotive, nuclear, medical, marine etc. A sequence of 15 experimental runs was conducted based on a small Central Composite Design (CCD) model in Response Surface Methodology (RSM). The primary (independent) parameters were: cutting speed, feed, and depth of cut. The tool overhang was kept constant at 70 mm. An engine lathe (Harrison M390) was employed for turning purposes. The data acquisition system comprised a vibration sensor (accelerometer) and a signal conditioning unit. The resultant vibrations were analyzed using the DASYLab 5.6 software. The best model was found to be quadratic which had a confidence level of 95% (ANOVA) and insignificant Lack of Fit (LOF) in Fit and Summary analyses. Desirability Function (DF) approach predicted minimum vibration amplitude of 0.0276 Volts and overlay plots identified two preferred machining regimes for optimal vibration amplitude.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2998 ◽  
Author(s):  
Kubilay Aslantas ◽  
Mohd Danish ◽  
Ahmet Hasçelik ◽  
Mozammel Mia ◽  
Munish Gupta ◽  
...  

Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface quality by a second operation, such as grinding. Therefore, it is important to obtain the good surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective optimization of micro-turning process parameters such as cutting speed, feed rate and depth of cut were performed by response surface method (RSM). Two important machining indices, such as surface roughness and material removal rate, were simultaneously optimized in the micro-turning of a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting tools. The overall results depict that the feed rate is the prominent factor that significantly affects the responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 162 ◽  
Author(s):  
Ramanan. G ◽  
Rajesh Prabha.N ◽  
Diju Samuel.G ◽  
Jai Aultrin. K. S ◽  
M Ramachandran

This manuscript presents the influencing parameters of CNC turning conditions to get high removal rate and minimal response of surface roughness in turning of AA7075-TiC-MoS2 composite by response surface method. These composites are particularly suited for applications that require higher strength, dimensional stability and enhanced structural rigidity. Composite materials are engineered materials made from at least two or more constituent materials having different physical or chemical properties. In this work seventeen turning experiments were conducted using response surface methodology. The machining parameters cutting speed, feed rate, and depth of cut are varied with respect to different machining conditions for each run. The optimal parameters were predicted by RSM technique. Turning process is studied by response surface methodology design of experiment. The optimal parameters were predicted by RSM technique. The most influencing process parameter predicted from RSM techniques in cutting speed and depth of cut.   


Sign in / Sign up

Export Citation Format

Share Document