Constitutive Characteristic of Hot Deformation for Spray Formed Superalloy GH738

2013 ◽  
Vol 747-748 ◽  
pp. 569-574 ◽  
Author(s):  
Yue Wang ◽  
Zhou Li ◽  
Wen Yong Xu ◽  
Hua Yuan ◽  
Na Liu ◽  
...  

The hot deformation behaviors of spray formed superalloy GH738 were investigated by using of Gleeble-3500 simulator in the temperature range of 950~1200, with a strain rate of 0.13~6.5s-1 and reduction of 50%. The corresponding flow curves were determined and hot deformed microstructures were observed. The results showed that the flow stress decreased with increasing deformation temperature or decreasing strain rate. A full dynamic recrystallization microstructures with fine-equiaxed grains were obtained at the temperature of 1100~1150 and strain rate of 2.6~6.5s-1. The hot deformation activation energy Q was 580.81kJ.mol-1, and the constitutive equation was derived by means of linear regression.

2008 ◽  
Vol 575-578 ◽  
pp. 164-168 ◽  
Author(s):  
Xin Zhao

The hot deformation behaviors of a ferritic spheroidal cast iron (FSCI) have been investigated by compression testing on a Gleeble 3500 machine of the DSI-YSU Joint Laboratory. The temperature rang was from 1073K to 1273K and strain rate from 10-3 to 1 s-1. The total true stain was 0.7. The result shows that the flow curves obtained are typical of dynamic recrystallization processes. The plots of either the natural logarithms of the corresponding temperature or the natural logarithms of strain rate against the hyperbolic of flow stresses satisfy straight line relationships over the experimental data, indicating that the hot compression of the FSCI is thermally activated. The material constants, including activation energy 0H as 240.8 kJ/mol, stress-level coefficient α as 1.352×10-8 Pa-1, stress exponential n as 3.9937, structural factor A as 5.64×108 s-1, are derived .


Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 119 ◽  
Author(s):  
Houyi Li ◽  
Lingling Fan ◽  
Mingyang Zhou ◽  
Youlong Zhou ◽  
Kuan Jiang ◽  
...  

The hot deformation test of the nano silicon carbide (nano-SiC) and carbon nano tubes (CNT) hybrid-reinforced AZ80 matrix composite was performed at compression temperatures of 300–450 °C and strain rates of 0.0001–1 s−1. It could be observed that the flow stress of the nanocomposite rose with the reduction of deformation temperature and the increase of strain rate. The hot deformation behaviors of the composite could be described by the sine-hyperbolic Arrhenius equation, and deformation activation energy (Q) was calculated to be 157.8 kJ/mol. The Q values of the extruded nanohybrid/AZ80 composite in this study and other similar studies on extruded AZ80 alloys were compared in order to analyze the effect of the addition of reinforcement, and the effects of deformation conditions on activation energy were analyzed. Finally, the compression microstructure in an unstable condition was carefully analyzed, and results indicated that the phenomenon of local instability was easy to occur at the compression specimen of the nanohybrid/AZ80 composite under deformation conditions of low temperature with high strain rate (300 °C, 0.1–0.01 s−1), and high temperature with low strain rate (450 °C, 0.0001 s−1).


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1248 ◽  
Author(s):  
Ivo Schindler ◽  
Petr Kawulok ◽  
Vladivoj Očenášek ◽  
Petr Opěla ◽  
Rostislav Kawulok ◽  
...  

Stress-strain curves of the EN AW 6082 aluminium alloy with 1.2 Si-0.51 Mg-0.75 Mn (wt.%) were determined by the uniaxial compression tests at temperatures of 450–550 °C with a strain rate of 0.5–10 s−1. The initial structure state corresponded to three processing types: as-cast structure non-homogenized or homogenized at 500 °C, and the structure after homogenization and hot extrusion. Significantly higher flow stress appeared as a result of low temperature forming of the non-homogenized material. Hot deformation activation energy Q-values varied between 99 and 122 kJ·mol−1 for both homogenized materials and from 200 to 216 kJ·mol−1 for the as-cast state, while the Q-values calculated from the measured steady-state stress were always higher than those calculated from the peak stress values. For the extruded state of the 6082 alloy, the physically-based model was developed to reliably predict the flow stress influenced by dynamic softening, temperature, strain rate, and true strain up to 0.6.


Author(s):  
B. F. Luan ◽  
R. S. Qiu ◽  
Z. Zhou ◽  
K. L. Murty ◽  
J. Zhou ◽  
...  

Hot deformation characteristics of forged and β-quenched Zr-1.0Sn-0.3Nb-0.3Fe-0.1Cr (N18 alloy) in the temperature range 625–950°C and in the strain rate range 0.005–5 s−1 have been studied by uniaxial compression testing of Gleeble 3500. For this study, the approach of processing maps has been adopted and their interpretation done using the Dynamic Materials Model (DMM). Based on a series of true stress-true strain curves on various temperatures and strain rates, the flow stress has been summarized and both the strain rate sensitivity index (m) and deformation activation energy (Q) have been calculated by the constitutive equations that flow stress and the relationship of Z parameter and flow stress have been established subsequently. Furthermore, the efficiency of power dissipation (⬜) given by [2m/(m+1)] and improved by Murty has been plotted as a function of temperature and strain rate to obtain different processing maps at different true strain rates ranging from 0.1–0.7. Subsequently, the microstructures of the specimens after compression testing were characterized by electron channeling contrast (ECC) imaging techniques used an FEI Nova 400 field emission gun scanning electron microscopy (FEG-SEM). The results showed that: (i) The hyperbolic sine constitutive equation can describe the flow stress behavior of zirconium alloy, and the deformation activation energy and flow stress equation were calculated under the different temperature stages which insists that the deformation mechanism is not dynamic recovery. (ii) The hot processing maps and its validation were analyzed, which indicated that the DMM theory was reliable and could be adopted as useful tool for optimizing hot workability of Zr. The optimum parameters for extrusion and hammer forging were revealed on the processing maps of 830–950°C, 0.048–2.141 s−1 and 916–950°C, 2.465–5 s−1. (iii) The microstructure of the ingot exhibits a typical lamellar Widmanstatten structure. Under the different strain rates, the grains formed by dynamic recrystallization existed normally in the central zone of the compression samples while the no uniformity of grain size increased with the increasing of strain rate. Meanwhile, due to the dynamic recrystallization as a thermal activation process, the grains size and uniformity increased with the increasing of temperature. In brief, microstructure analysis showed that continuous dynamic recrystallization and geometric dynamic recrystallization operated concurrently during the isothermal compressive deformation.


2011 ◽  
Vol 415-417 ◽  
pp. 1147-1152 ◽  
Author(s):  
Yin Ben Han ◽  
Zhuo Liang Li ◽  
Ge Zhou ◽  
Fu Rong Cao ◽  
Hua Ding ◽  
...  

The hot deformation characteristics of Al-12.7Si-0.7Mg alloy were investigated on an Instron5500 electronic universal testing machine at strain rates ranging from 1.67×10-4 s-1 to 1.67×10-3 s-1 and testing temperatures ranging from 460 °C to 520 °C. The results show that strain rate had a great effect on the flow stress. The flow stress increased with increasing the strain rate. The true stress-strain curves of the Al-12.7Si-0.7Mg alloy were obtained, and the strain rate sensitivity and hot deformation parameters of deformation activation energy were calculated. The hot deformation constitutive equation with hyperbolic sine form was also obtained. The test calculations demonstrate that the constitutive equation describes the deformation features of the Al-12.7Si-0.7Mg alloy well.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoping Luo ◽  
Shue Dang ◽  
Li Kang

The hot deformation behavior of an AZ81 magnesium alloy was investigated by hot compressive testing on a Gleeble-1500 thermal mechanical simulator in the temperature range from 200 to 400°C and in the strain rate range of 0.001–5 s−1. The relationships among flow stress, strain rate, and deformation temperature were analyzed, and the deformation activation energy and stress exponent were calculated. The microstructure evolution of the AZ81 magnesium alloy under high deformation was examined. The results indicated that the maximum value of the flow stress increased with the decrease of deformation temperature and the increase of strain rate. When the deformation temperature is constant, the flow stress of the AZ81 magnesium alloy increases with the increase of strain rate, which can be demonstrated by a Zener-Hollomon parameter in a hyperbolic-sine-type equation with a hot compression deformation activation energy of 176.01 KJ/mol and basic hot deformation material factorsA,n, andain the analytical expression of the AZ81 magnesium alloy flow stress of3.21227×1014 s−1, 7.85, and 0.00866 MPa, respectively.


2014 ◽  
Vol 1058 ◽  
pp. 165-169 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.


2019 ◽  
Vol 51 (1) ◽  
pp. 467-481
Author(s):  
Suwaree Chankitmunkong ◽  
Dmitry G. Eskin ◽  
Chaowalit Limmaneevichitr

Abstract Aluminum piston alloys of the AA4032 type are produced by direct-chill (DC) casting and subsequent forging; therefore, it is important to understand their thermomechanical behavior. In recent years, it was shown that additions of Cu and Er could improve mechanical properties of these alloys at room and high temperatures. In this work, we studied the constitutive behavior of AA4032-type alloys with and without Cu and Er additions. The experimental true stress–true strain curves were obtained by compression tests under various temperatures [683 K to 723 K (410 °C to 450 °C)] and strain rates (0.01 to 10 s−1) to determine constitutive parameters [strain-rate sensitivity, activation energy, and Zener–Hollomon (Z) parameter] for the hot deformation behavior of AA4032-type piston alloys with and without additions of Cu and Er. The flow stress decreased with increasing deformation temperature and decreasing strain rate. The results also showed that increasing the Cu content increased the flow stress over the applied range of deformation conditions due to solid-solution strengthening and the formation of primary Si particles, which led to an increase in the activation energy during hot deformation. Moreover, the main microstructural damage in the AA4032 alloy with 3.5 pct Cu was predominantly due to the cracking of primary Si particles. Additions of 0.4 pct Er and 3.5 pct Cu lower the activation energy of deformation, Q, as compared to the base alloy and the alloy with 3.5 pct Cu. The microstructures in the deformed specimens consisted of subgrains, recrystallized grains, and fine eutectic phases. The alloys containing Er demonstrated more polygonized grains at a low strain rate than the alloys without Er, indicating that Er hindered recrystallization development. The peak stress of the AA4032 alloy with 3.5 pct Cu alloy was higher than for the base AA4032 alloy and for the AA4032 alloy with 3.5 pct Cu and 0.4 pct Er additions, which was attributed to the prevalence of the work-hardening mechanism over the softening mechanism.


2013 ◽  
Vol 747-748 ◽  
pp. 703-708 ◽  
Author(s):  
Tao Wang ◽  
Shu Hong Fu ◽  
Zhao Li ◽  
Yong Zhang ◽  
Yu Xin Zhao ◽  
...  

Hot compressive deformation of Udimet720Li alloy was carried out on Gleeble-3500 thermal mechanical simulator. The flow stress behavior of Udimet720Li alloy during hot compression was studied in the temperature range of 1100-1160 and at a strain rate of 0.001-1s -1. The results showed that the flow stress was controlled by both strain rate and deforming temperature. The flow stress decreased with the increase of deforming temperature, while increased with the increase of strain rate. The change of flow stress with deformation thermal parameters was revealed from true stress-true strain curves, and constitutive relationship of Udimet720Li alloy was obtained on the base of Arrhenius equations and the deformation activation energy was calculated.


2011 ◽  
Vol 291-294 ◽  
pp. 635-639 ◽  
Author(s):  
Xiao Qing Xu ◽  
De Fu Li ◽  
Sheng Li Guo ◽  
Xiao Ping Wu

The hot deformation behavior of the Zn-8Cu-0.3Ti alloy was researched by compression test on Gleeble-3500 thermo-simulation machine. The results indicated that the flow stress increased rapidly with the increase of the strain at the initial stage, however, the flow stress decreased and become steady when the strain exceed a certain value. The steady stress and peak stress increased with the decrease of the deformation temperature and the increase of the strain rate. The variation regulation of the deformation activation energy and stress exponent with the strain was established through the regression method. The hot deformation constitutive relationship was also established. Comparing with the experimental results, it was proved that the model reflected the real deformation feature of Zn-8Cu-0.3Ti zinc alloy.


Sign in / Sign up

Export Citation Format

Share Document