Experimental Study on Tool Wear when Machining Super Titanium Alloys: Ti6Al4V and Ti-555

2013 ◽  
Vol 763 ◽  
pp. 51-64
Author(s):  
Mohammed Nouari ◽  
Hamid Makich

To understand the effect of the workpiece microstructure on the tool wear behavior, anexperimental investigation was conducted on machining two different microstructures of supertitanium alloys: Ti-6Al-4V and Ti-555. The analysis of tool-chip interface parameters such asfriction, heat flux and temperature rise and the evolution of the workpiece microstructure underdifferent cutting conditions have been discussed. As cutting speed and feed rate increase, the meancutting forces and temperature show different progressions depending on the consideredmicrostructure. Results show that wear modes for cutting tools used in machining the Ti-555 alloyshow contrast from those exhibited by tools used in machining the Ti6AI4V alloy. In fact, onlyabrasion wear was observed for cutting tools in the case of machining the near-β titanium Ti-555alloy. The last alloy is characterized by a fine-sized microstructure (order of 1 μm). For the usualTi6Al4V alloy, adhesion and diffusion modes followed by coating delamination process on the toolsubstrate have been clearly identified. Moreover, a deformed layer was observed under secondaryelectron microscope (SEM) from the sub-surface of the chip with β-grains orientation along thechip flow direction. The analysis of the microstructure confirms the intense deformation of themachined surface and shows a texture modification, without phase transformation. For the Ti-555β-alloy, β grains experiences more plastic deformation and increases the microhardness of theworkpiece inducing then an abrasion wear process for cemented carbide tools. For the Ti6Al4Vmicrostructure, the temperature rise induces a thermal softening process of the workpiece andgenerates adhesive wear modes for cutting tools. The observed worn tool surfaces confirm theeffect of the microstructure on tool wear under different cutting conditions for the two studiedtitanium alloys.

2005 ◽  
Vol 127 (2) ◽  
pp. 328-332 ◽  
Author(s):  
A. G. Mamalis ◽  
J. Kundra´k ◽  
M. Horva´th

When using new, very expensive superhard tool materials (diamond or CBN) for precision and ultraprecision machining of parts made, very often, from expensive materials, exact knowledge of the tool wear process (considering, of-course, its stochastic character) is absolutely necessary. It means, that we need new tool-life equations for these new tools. In the present paper, a new tool life relation is proposed based on machining experiments. It reflects the two-extremum form of tool life curves and is valid for a wide range of cutting conditions.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 3495-3505
Author(s):  
Josef Chladil ◽  
Josef Sedlák ◽  
Eva Rybářová Šebelová ◽  
Marián Kučera ◽  
Miroslav Dado

The article deals with data in the cutting process of wood-based materials. The cutting process influences the shape and dimensions of a cutting edge. The experiments were focused on monitoring the changes of the cutting edge in machining of particle board and the influence of cutting speed on the tool wear. Cutting tests were performed during milling at cutting rates in the range 7.95 to 17.9 m/s (477 to 1074 m/min), a depth of cut of 9.5 mm, and a tooth feed of 0.05 mm. The wear process of cutting wedge during particle board milling is characterized by a decrease in the cutting edge of insert blades. The comparative digital dial gauge was used for measurement of the cutting wedge recession. The course of the wear of wood based materials exhibited similarity in graphical representation with abrasive material cutting. The resulting dependency may be used for selection of the most suitable cutting conditions according to operator requirements.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 447 ◽  
Author(s):  
Sergey Grigoriev ◽  
Alexey Vereschaka ◽  
Alexander Metel ◽  
Nikolay Sitnikov ◽  
Filipp Milovich ◽  
...  

This paper deals with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating. It has a three-layered architecture with a nano-structured wear-resistant layer. The studies involved the investigation into the microstructure (with the use of SEM and TEM), elemental and phase composition (XRD and SAED patterns), wear process pattern in scratch testing, crystal structure, as well as the microhardness of the coating. Cutting tests of tools with the above coating were carried out in dry turning of steel 1045 at cutting speeds of vc = 200, 250, and 300 m·min−1. The comparison included uncoated tools and tools with the commercial TiN and (Ti,Al)N coatings with the same thickness. The tool with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating showed the longest tool life at all the cutting speeds under consideration. Meanwhile, a tool with the coating under study can be recommended for use in turning constructional steel at the cutting speed of vc = 250 m·min−1. At this cutting speed, a tool shows the combination of a rather long tool life and balanced wear process, without any threat of catastrophic wear.


2010 ◽  
Vol 33 ◽  
pp. 173-176
Author(s):  
X.Y. Wang ◽  
S.Q. Pang ◽  
Q.X. Yu

The aim of this work is to investigate the machinability of new coated carbide cutting tools that are named C7 plus coatings under turning of superalloy GH2132. This achieved by analysis of tool life at different cutting conditions .Investigations of tool wear and tool life testing are intended to establish T-V formulas, and then analyzed the characteristics of coating . Through a series of comparative tests, Using TiAlN coatings as the contrast materialthe results show that the new coating tools that are named C7 plus coatings are suitable for cutting superalloy GH2132. The cutting speed and processing efficiency can be increased effectively.


2012 ◽  
Vol 499 ◽  
pp. 348-352 ◽  
Author(s):  
Xiao Li Zhu ◽  
Song Zhang ◽  
X.L. Xu ◽  
H.G. Lv

In the present study, an experimental investigation has been carried out in an attempt to monitor tool wear progress in turning Inconel 718 with coated carbide inserts under the wet cutting condition. First, each experimental test was conducted with a new cutting edge and the turning process was stopped at a certain interval of time. Secondly, the indexable insert was removed from the tool holder and the flank wear of the insert was measured using a three-dimensional digital microscopy (VHX-600E); and then the insert was clamped into the tool holder for the next turning experiment. The final failure of tool wear surfaces were examined under a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). It is indicated that significant flank wear was the predominant failure mode, and the abrasive, adhesive and oxidation wear were the most dominant wear mechanisms which directly control the deterioration and final failure of the cutting tools.


2002 ◽  
Vol 124 (4) ◽  
pp. 820-832 ◽  
Author(s):  
Jiancheng Liu ◽  
Kazuo Yamazaki ◽  
Hiroyuki Ueda ◽  
Norihiko Narutaki ◽  
Yasuo Yamane

In order to increase the accurate finishing productivity of pearlitic cast iron, face milling by CBN (Cubic Boron Nitride) cutting tools was studied. The main focus of the study is the machinability investigation of pearlitic cast iron with CBN cutting tools by studying the relationships among machining conditions such as feed rate, cutting speed as well as CBN cutting tool type, tool wear, workpiece surface quality, cutting forces, and cutting temperature. In addition, an emphasis is put on the effect of Al additive in pearlitic cast iron on its machinability and tool wear characteristics. High-speed milling experiments with CBN cutting tools were conducted on a vertical machining center under different machining conditions. The results obtained provide a useful understanding of milling performance by CBN cutting tools.


Sign in / Sign up

Export Citation Format

Share Document