Modelling Creep Induced by Machining Residual Stresses in Aluminium Alloys

2013 ◽  
Vol 765 ◽  
pp. 585-589 ◽  
Author(s):  
Timothy Spence ◽  
Makhlouf M. Makhlouf

Aluminium alloy precision components such as those used in optical systems often experience distortion of their shape during service. This distortion occurs because of residual stresses that are introduced into the surface of the component during machining and lead to creeping of the material when the component is subjected to an elevated temperature for a long time. In this paper, a creep model is developed and used to describe how the residual surface stresses created by milling and by fly cutting affect the geometry of an aluminium alloy component as it creeps. The accuracy of the model is verified by comparing its predictions to measurements made on components manufactured from 4032-O and 6061-T6 aluminium alloys.

2016 ◽  
Vol 877 ◽  
pp. 393-399
Author(s):  
Jia Zhou ◽  
Jun Ping Zhang ◽  
Ming Tu Ma

This paper presents the main achievements of a research project aimed at investigating the applicability of the hot stamping technology to non heat treatable aluminium alloys of the 5052 H32 and heat treatable aluminium alloys of the 6016 T4P after six months natural aging. The formability and mechanical properties of 5052 H32 and 6016 T4P aluminum alloy sheets after six months natural aging under different temperature conditions were studied, the processing characteristics and potential of the two aluminium alloy at room and elevated temperature were investigated. The results indicated that the 6016 aluminum alloy sheet exhibit better mechanical properties at room temperature. 5052 H32 aluminum alloy sheet shows better formability at elevated temperature, and it has higher potential to increase formability by raising the temperature.


2021 ◽  
Vol 42 ◽  
pp. 50-56
Author(s):  
Maria Stoicănescu ◽  
Gheorghe Popa ◽  
Marin Petre ◽  
Alexandra Valerica Achim

The quenching is one of the most used mechanisms for increase the strength of aluminium alloys sheets. The purpose of quenching is to keep the super-saturated solid solution formed during the solution heat treatment as intact by rapid cooling. In order to establish the influence of the addition of polymer in the quenching water on the distortion and residual stresses of the aluminium alloy sheets, several tests were performed with different concentrations of the polymer in demineralized water. The experiments were performed on 6082 aluminium alloy sheets with a thickness of 5 mm. The quenching of the samples was done by immersion in a stainless steel vessel with a capacity of 10 liters. The obtained results show that the addition of polymer in demineralized water positively influences the deformation of aluminium alloy sheets. In this way, a correlation between the polymer concentration and the deformation of the plates was established. Regarding the internal stresses, no correlation was identified with the level of polymer used in demineralized water.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1211
Author(s):  
Maja Vončina ◽  
Aleš Nagode ◽  
Jožef Medved ◽  
Irena Paulin ◽  
Borut Žužek ◽  
...  

When extruding the casted rods from EN AW 2011 aluminium alloys, not only their homogenized structure, but also their extrudable properties were significantly influenced by the hardness of the alloy. In this study, the object of investigations was the EN AW 2011 aluminium alloy, and the effect of homogenisation time on hardness was investigated. First, homogenisation was carried out at 520 °C for different times, imitating industrial conditions. After homogenisation, the samples were analysed by hardness measurements and further characterised by microscopy and image analysis to verify the influence of homogenisation on the resulting microstructural constituents. In addition, non-equilibrium solidification was simulated using the program Thermo-Calc and phase formation during solidification was investigated. The homogenisation process enabled more rounded shape of the Al2Cu eutectic phase, equilibrium formation of the phases, and the precipitation in the matrix, leading to a significant increase in the hardness of the EN AW 2011 aluminium alloy. The experimental data revealed a suitable homogenisation time of 4–6 h at a temperature of 520 °C, enabling optimal extrusion properties.


2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.


Author(s):  
Stephanie Saalfeld ◽  
Thomas Wegener ◽  
Berthold Scholtes ◽  
Thomas Niendorf

AbstractThe stability of compressive residual stresses generated by deep rolling plays a decisive role on the fatigue behavior of specimens and components, respectively. In this regard, deep rolling at elevated temperature has proven to be very effective in stabilizing residual stresses when fatigue analysis is conducted at ambient temperature. However, since residual stresses can be affected not only by plastic deformation but also when thermal energy is provided, it is necessary to analyze the influence of temperature and time on the relaxation behavior of residual stresses at elevated temperature. To evaluate the effect of deep rolling at elevated temperatures on stability limits under thermal as well as combined thermo-mechanical loads, the present work introduces and discusses the results of investigations on the thermal stability of residual stresses in differently deep rolled material conditions of the steel SAE 1045.


Sign in / Sign up

Export Citation Format

Share Document