Sensitivity of Macro- and Micro-Residual Stress States of Steel Surfaces to Thermal Influences Caused by Grinding Burn and Laser Treatments

2013 ◽  
Vol 768-769 ◽  
pp. 412-419
Author(s):  
Bernd Eigenmann ◽  
Antje Zösch ◽  
Martin Seidel

Thermal influences, introduced intentionally or unintentionally do have significant effects on surfaces of steel components. Materials properties are reduced by annealing effects or even re-hardening zones can occur. Grinding, one of the most important technological processes for preci-sion manufacturing of hardened steel components, is an important source of thermal influences to steel surfaces. In pronounced cases, these influences are referred to as grinding burn. They are known as possible reasons for gray stains as well as development of cracks and pittings on heavy-duty gears and on roller bearings. The basic effect of thermal influences on the material is a change of the macro- and micro-residual stress states. Therefore, the knowledge of these residual stress states is of fundamental importance. The paper treats the mechanisms of grinding which can lead to thermal influences. Some characteristic appearances of grinding burn are shown and characterized by X-ray macro- and micro residual stress determinations. It is shown that defined laser treatments can be used to create reproducible thermal influences similar to grinding burn. Their effects are also characterized by X-ray residual stress measurements. The sensitivities of X-ray and metallographical investigations are compared. Defined laser traces are proposed as calibration samples for magnetic and eddy current measurements which allow to determine threshold values for the actual apparatus and measuring problem.

Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


2010 ◽  
Vol 652 ◽  
pp. 37-43 ◽  
Author(s):  
Jeremy Epp ◽  
Thomas Hirsch ◽  
Martin Hunkel ◽  
Robert C. Wimpory

The present work has been executed within the framework of the collaborative research center on Distortion Engineering (SFB 570) in order to evaluate the residual stress state of a disc after carburizing and quenching as well as to validate a simulation procedure. The combined use of X-ray and neutron diffraction analysis provided information about the residual stress states in the whole cross section. However, the stress free lattice spacing d0 for the neutron diffraction experiments is problematic and induces systematic uncertainties in the results and the application of a force balance condition to recalculate d0 might be a solution for improving the reliability of the results. Comparison of experimental results with simulation showed that an overall satisfying agreement is reached but discrepancies are still present.


2012 ◽  
Vol 729 ◽  
pp. 199-204 ◽  
Author(s):  
Dávid Cseh ◽  
Valéria Mertinger

Residual stresses have a fundamental effect on the operational behaviour and lifetime of industrial products. The fatigue resistance of machine parts can be increased by introducing residual compressive stresses into the surface region. For certain machine parts especially in the vehicle industry the residual stress is strongly demanded by the quality control. For this reason, measuring the stress accurately is becoming increasingly important. The Almen test, which only gives a qualitative result, is widely used in the industry. Shot peening and rolling are methods which are suitable for creating elastic residual stresses. This paper examines the technologies used by Rába Futómű Nyrt. to increase the lifetime by means of residual stress. We performed analysis of the residual stress of samples shot peened the same way but under different heat treatment states. We compared the residual stress values of burnished and hardened shaft joints, and the residual stress states of gear made of hardened alloy, comparing the carbonized ones to ones which were shot peened under small intensity.


1991 ◽  
Vol 35 (A) ◽  
pp. 561-569
Author(s):  
Jun S. Park ◽  
James F. Shackelford

AbstractThe analysis of linear dϕψ vs sin2ψ x-ray diffraction data in isotropic single phase materials was investigated for the evaluation of x-ray elastic constants. This study developed an experimental model for estimating x-ray elastic constants based on the analysis of biaxial residual stress states, A ball bearing steel and a 1018 steel weldment were evaluated.In a second study, the measurement of residual stress gradients was evaluated for those depth ranges mat can not be evaluated with a single radiation. This requires various planes and radiation energies to obtain the simultaneous conditions of high diffraction angle and large x-ray penetration depth. The evaluation of the overlapped stress gradient region is illustrated in terms of x-ray energy and diffraction angle for the ease of iron. This analysis is specifically developed for the purpose of stress gradient measurement using synchrotron radiation.


1999 ◽  
Vol 32 (4) ◽  
pp. 779-787 ◽  
Author(s):  
Ch. Genzel ◽  
M. Broda ◽  
D. Dantz ◽  
W. Reimers

The application of the formalism for residual-stress gradient evaluation based on the measuring principle of the scattering-vector method, which has been derived in the first paper of this series [Genzel (1999).J. Appl. Cryst.32, 770–778], is demonstrated by practical examples. Depending on the statistical scattering of the experimental data, either biaxial or even triaxial residual-stress states may be analysed; the latter case yields self-consistently the depth profiles of the in-plane stresses, σ11(τ) and σ22(τ), the normal stress component, σ33(τ), as well as the strain-free lattice spacing,d0(hkl). The results obtained by this new evaluation procedure are compared with those obtained by X-ray stress-gradient analysis performed on the basis of the sin2ψ method.


Sign in / Sign up

Export Citation Format

Share Document