scholarly journals High Energy Synchrotron X-Ray Measurements of 2D Residual Stress States in Metal Matrix Composites

2000 ◽  
Vol 321-324 ◽  
pp. 218-223 ◽  
Author(s):  
Alexander M. Korsunsky ◽  
Karen E. Wells
1988 ◽  
Vol 142 ◽  
Author(s):  
Rahmi Yazici ◽  
K. E. Bagnoli ◽  
Y. Bae

AbstractIn this study the progression of thermally and mechanically induced internal strains (stresses) in metal-matrix composites was investigated by X-ray methods. The materials studied were whisker-reinforced 2124 Al-SiC(w) and 6061 Al- SiC(w) composites. X-ray diffractometry was used to measure thermally induced stresses on samples cycled from ambient to 280°C. Significant variations in residual stress values were observed in the matrix depending on the location and direction of the measurements with respect to the whisker orientation. The determined stress states of the as-processed and the thermally cycled samples were evaluated with continuum models. The microstrains in composites induced during processing and tensile loading were also investigated by nondestructive means. Individual grains of the matrix were analyzed by rocking-curve measurements using a modified X-ray doublecrystal diffractometer. The relationship between the plastic deformation induced by applied loads and the progression of the microstrain/excess-dislocation values was determined.


Author(s):  
Partha Rangaswamy ◽  
N. Jayaraman

Abstract In metal matrix composites residual stresses developing during the cool-down process after consolidation due to mismatch in thermal expansion coefficients between the ceramic fibers and metal matrix have been predicted using finite element analysis. Conventionally, unit cell models consisting of a quarter fiber surrounded by the matrix material have been developed for analyzing this problem. Such models have successfully predicted the stresses at the fiber-matrix interface. However, experimental work to measure residual stresses have always been on surfaces far away from the interface region. In this paper, models based on the conventional unit cell (one quarter fiber), one fiber, two fibers have been analyzed. In addition, using the element birth/death options available in the FEM code, the surface layer removal process that is conventionally used in the residual stress measuring technique has been simulated in the model. Such layer removal technique allows us to determine the average surface residual stress after each layer is removed and a direct comparison with experimental results are therefore possible. The predictions are compared with experimental results of an eight-ply unidirectional composite with Ti-24Al-11 Nb as matrix material reinforced with SCS-6 fibers.


2019 ◽  
Vol 809 ◽  
pp. 79-86
Author(s):  
Georges Lemos ◽  
Márcio C. Fredel ◽  
Florian Pyczak ◽  
Ulrich Tetzlaff

Metal Matrix Composites (MMCs) are known for their remarkable properties, by combining materials from different classes. Ni-based MMCs are a promising group of heat-resistant materials, targeting aerospace applications. A discontinuously reinforced Inconel X-750/TiC 15 vol.% MMC was proposed for use in lighter, creep resistant turbine elements, with the aim to endure service temperatures up to 1073 K (800 °C). However, their microstructural stability at high temperatures for long periods of time remained to be further investigated. To address this need, specimens were produced by both conventional hot pressing and spark plasma sintering, using powders milled by low and high energy processes, followed by long isothermal aging. The treatments were conducted at 973 and 1073 K, for times between 50 and 1000 hours. The resulting samples were investigated with XRD and EDS techniques for phase analysis. In addition, measurements of hardness were made to monitor changes in mechanical behavior. It was found that, for each different manufacturing process, the amount, distribution and size of γ’ and other precipitates notably vary during the overaging process. Consequently, the amount of elements kept in solid solution also shifted with time. Furthermore, the study shows how distinct initial microstructures, resulting from diverse fabrication processes, differently impact the microstructural stability over long times of exposure to high temperatures.


1997 ◽  
Vol 68 (6) ◽  
pp. 2550-2553 ◽  
Author(s):  
Richard A. Rosenberg ◽  
Qing Ma ◽  
William Farrell ◽  
Mark Keefe ◽  
Derrick C. Mancini

2010 ◽  
Vol 638-642 ◽  
pp. 967-972
Author(s):  
Bernd R. Müller ◽  
Axel Lange ◽  
M. Harwardt ◽  
M.P. Hentschel

X-ray computed tomography is an important tool for evaluating the three dimensional microstructure of modern materials non-destructively. To resolve material structures in the micrometre range and below high brilliance synchrotron radiation has to be taken. But materials of low absorption or mixed phases show a weak absorption contrast at there interfaces. A Contrast enhancement can be achieved by exploiting the refraction of X-rays at interfaces. This technique was developed and applied at the NDT department of the Federal Institute for Materials Research and Testing (BAM) during the last decade. It meets the actual demand for improved non-destructive characterisation of high performance composites, ceramics and other low density materials and components. The technique is based on Ultra Small Angle Scattering (USAXS) by micro structural elements causing phase related effects like refraction and total reflection at a few minutes of arc as the refractive index of X-rays is nearly unity. The extraordinary refraction contrast of inner surfaces is far beyond absorption effects and hence especially useful for materials of low absorption or mixed phases, showing similar X-ray absorption properties. Crack orientation and fibre-matrix debonding in plastics, polymers, ceramics and metal-matrix-composites after cyclic loading and hydro thermal aging can be visualized. By combining the refraction technique with the computed tomography technique the three dimensional imaging of the micro structure of the materials is obtained. In most cases the investigated inner surface and interface structures correlate to mechanical properties. Recent results with a sub-micrometer resolution will be presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Laura Angélica Ardila Rodriguez ◽  
Dilermando Nagle Travessa

The production of metal matrix composites with elevated mechanical properties depends largely on the reinforcing phase properties. Due to the poor oxidation resistance of multiwalled carbon nanotubes (MWCNTs) as well as their high reactivity with molten metal, the processing conditions for the production of MWCNT-reinforced metal matrix composites may be an obstacle to their successful use as reinforcement. Coating MWCNTs with a ceramic material that acts as a thermal protection would be an alternative to improve oxidation stability. In this work, MWCNTs previously functionalized were coated with titanium dioxide (TiO2) layers of different thicknesses, producing a core-shell structure. Heat treatments at three different temperatures (500°C, 750°C, and 1000°C) were performed on coated nanotubes in order to form a stable metal oxide structure. The MWCNT/TiO2 hybrids produced were evaluated in terms of thermal stability. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), and X-ray photoelectron spectroscopy (XPS) were performed in order to investigate TiO2-coated MWCNT structure and thermal stability under oxidative atmosphere. It was found that the thermal stability of the TiO2-coated MWCNTs was dependent of the TiO2 layer morphology that in turn depends on the heat treatment temperature.


Sign in / Sign up

Export Citation Format

Share Document