Research on Cutting Force Characteristics of Laser and Ultrasonic Assisted Cutting of Sintered Tungsten Carbide with FEA Method

2013 ◽  
Vol 770 ◽  
pp. 272-275 ◽  
Author(s):  
Feng Jiao ◽  
Feng Bian Li ◽  
Peng Duan

Based on the application of elliptical vibration cutting method to precision machining of hard and brittle materials and material softening technology through laser heating, a novel composite cutting technique, laser heating and ultrasonic elliptical vibration assisted cutting, is applied to process sintered tungsten carbide. The simulation of the orthogonal cutting process and the effect of frequency and amplitude of vibration and laser heating temperature on cutting force are discussed by using FEA method. Research results have revealed that the main peak of the transient force components increase with the increase of vibration frequency, decrease with the increase of vibration amplitude and laser heating temperature. Moreover, the friction reversal phenomenon is improved with the increase of vibration frequency and amplitude, resulting in the decrease of average cutting force. Compared to common cutting and traditional one-dimensional ultrasonic vibration cutting, the composite cutting technology put forward in this paper has unique cutting force characteristics for such super hard material because of combined action of friction reversal and intermittence cutting for ultrasonic elliptical vibration and material softening for laser heating. The research in the paper has provided a practical reference for the further experiments of laser and ultrasonic assisted cutting.

2016 ◽  
Vol 693 ◽  
pp. 1272-1278
Author(s):  
Jie Li ◽  
Feng Jiao ◽  
Ying Niu ◽  
Long Fei Shi

Based on the mechanism of single-excitation elliptical vibration by means of opening chutes on the horn, a novel two-dimensional ultrasonic cutting system was developed. Vibration characteristics of the two-dimensional ultrasound cutting system were researched and the longitudinal and bending amplitude of the system with different number of chutes were obtained. By using developed two-dimensional ultrasonic vibration cutting systems, series of cutting experiments were carried out and cutting force characteristics were researched compared with that in traditional cutting.


2021 ◽  
Author(s):  
Rendi Kurniawan ◽  
Moran Xu ◽  
Chang Ping Li ◽  
Gun Chul Park ◽  
Ye In Kwak ◽  
...  

Abstract This paper reports the numerical analysis results of ultrasonic elliptical vibration cutting (UEVC) combined with the electrical discharge cutting (EDC), called UEVC+EDC. UEVC delivers decreasing cutting forces, repressing side-burrs, and lowering tool wear. EDC is a cutting technique using a pulsed spark to remove material using thermal energy. Difficult-to-cut materials, such as Ti-6Al-4V, can be cut effectively by combining these two techniques. A numerical study was performed using ABAQUS finite element analysis (FEA) software by investigating the von Mises stress, cutting forces, and temperature. Numerical analysis was carried out by modifying the ultrasonic vibration frequency, distance of the discharge pulse, discharge voltage, and discharge pulse radius. UEVC+EDC was compared numerically and experimentally with regular cutting (NC) and UEVC in terms of cutting force and tool temperature. The results showed that the UEVC+EDC method could improve the cutting condition by reducing the cutting force and von Mises stress and increasing the tool temperature.


2012 ◽  
Vol 523-524 ◽  
pp. 113-118 ◽  
Author(s):  
Jian Guo Zhang ◽  
Norikazu Suzuki ◽  
Takashi Kato ◽  
Rei Hino ◽  
Eiji Shamoto

Tungsten carbide is a crucial material for glass molding in optical industry. The present study investigated a feasibility of ductile machining of sintered tungsten carbide for glass molding by applying ultrasonic elliptical vibration cutting technology with single crystal diamond tool. Grain size and binder material of sintered tungsten carbide have an influence on hardness and/or toughness of the material. Binder material also has a chemical affinity to diamond. In order to examine the influence of material composition on ductile machining of tungsten carbide, a series of grooving and planing experiments were conducted to several different tungsten carbide workpieces with the different binder phase and the different grain size. The experimental results indicated that micro grooving in a ductile mode can be attained successfully by applying ultrasonic elliptical vibration cutting, while finished surface deteriorates with brittle fractures in ordinary cutting. It was also clarified that grain size and binder material have significant influence on the deteriorations in the surface quality, the tool shape and the cutting forces.


2012 ◽  
Vol 217-219 ◽  
pp. 1688-1694
Author(s):  
Ji Liang Wu ◽  
De Yuan Zhang ◽  
Xing Gang Jiang

In this paper a method of ultrasonic elliptical vibration cutting has been applied to precision boring of micro hole due to its superior performances such as low cutting force, high quality surface finish and long tool life. A transducer with the longitudinal excitation is carried out to machining(boring) micro hole of 1Cr18Ni9Ti workpiece. The cutting force and surface quality are studied in detail.The workpiece with surface roughness of Rz 0.4μm is achieved.The results showed that the ultrasonic elliptical vibration transducer can be applied rationally in micro hole precision boring.


2004 ◽  
Vol 471-472 ◽  
pp. 396-400 ◽  
Author(s):  
Chun Xiang Ma ◽  
Eiji Shamoto ◽  
T. Moriwaki

In the present paper, the thrust cutting force model in ultrasonic elliptical vibration cutting is proposed based on the principle of ultrasonic elliptical vibration cutting, and the reason of the thrust cutting force reduced by applying ultrasonic elliptical vibration is clarified theoretically. The effect of ultrasonic elliptical vibration on the thrust cutting force is verified experimentally.


2011 ◽  
Vol 55-57 ◽  
pp. 327-331 ◽  
Author(s):  
Cheng Mao Zhang ◽  
Cheng Li ◽  
De Yuan Zhang

Hardened stainless steels are materials widely used in the field of aviation and spaceflight. Machining of this materials with conventional cutting (CC) method is a real challenge compared to other difficult-to-cut materials. Ultrasonic elliptical vibration cutting (UEVC) method is a novel and non-conventional cutting technique which has been successfully applied to machine such intractable materials for the last decade. However, few studies have been conducted on the cutting force in ultrasonic elliptical vibration cutting of hardened materials. This paper presents an experimental study on cutting force in UEVC of hardened stainless steels using cemented carbide tools. Experiments have been carried out to investigate the effect of cutting parameters in the UEVC method in terms of cutting force, while cutting hardened stainless steels. The tests have revealed that the average thrust force,principal force and feed force drop to 3%,10% and 90% of CC value for UEVC of hardened stainless steels. The ratio between the CC force and the UEVC force decrease with the increase of DOC and cutting speed.


Sign in / Sign up

Export Citation Format

Share Document