Tensile Deformation of Magnesium and Magnesium Alloy Single Crystals

2014 ◽  
Vol 783-786 ◽  
pp. 341-345 ◽  
Author(s):  
Shinji Ando ◽  
Atsushi Kodera ◽  
Kazuki Fukushima ◽  
Masayuki Tsushida ◽  
Hiromoto Kitahara

According to von-Mises criterion, five kinds of independent slip systems are required for uniform deformation, so it is necessary to activate non-basal slip systems to show good ductility. However, it has not become clear the effect of Zn or Al for non-basal slip systems yet. To investigate deformation behavior of magnesium crystal by non-basal slip and alloying effect for the non-basal slip, pure magnesium and Mg-Al-Zn single crystals were stretched in the [110] direction. While {112}<23> second order pyramidal slip was activated at room temperature in pure magnesium, {101}<23> first order pyramidal slip became active slip at higher temperature. In Mg-Al-Zn alloy single crystal, {101} twin also activated by adding aluminum. These results indicate that active non-basal slip systems and twin in magnesium strongly depend on deformation temperature and alloying elements.

2012 ◽  
Vol 706-709 ◽  
pp. 1122-1127 ◽  
Author(s):  
Shinji Ando ◽  
Masayuki Tsushida ◽  
Hiromoto Kitahara

Zn and Al are major alloying elements of Mg alloys. Main slip system of Mg is a basal slip and the CRSS increases with Zn or Al content. According to von-Mises criterion, five kinds of independent slip systems are required for uniform deformation, so it is necessary to activate non-basal slip systems to show good ductility. However, it has not become clear the effect of Zn or Al for non-basal slip systems yet. To investigate deformation behavior of magnesium crystal by non-basal slip, Mg-Zn and Mg-Al single crystals were stretched in the [110] direction and Mg-Zn single crystals were compressed in the [0001] direction. {112}<23> second order pyramidal slip was activated in Mg-0.1at%Zn and Mg-0.5at%Al. On the other hand, {101} twin was mainly activated in Mg-1.0at%Al alloy. Yield stress due to the pyramidal slip of magnesium decreased by 0.1at%Zn addition, however they increased with addition of aluminum..


2007 ◽  
Vol 345-346 ◽  
pp. 101-104 ◽  
Author(s):  
Shinji Ando ◽  
Naoharu Harada ◽  
Masayuki Tsushida ◽  
Hiromoto Kitahara ◽  
Hideki Tonda

It is important to research activation of the slip systems in magnesium crystals to understand deformation behavior of magnesium. In this study, pure magnesium, Mg-7.0at%Li and Mg-0.1at%Zn single crystals were stretched in the [11-20] direction in the range of 77K to 573K to investigate the deformation behavior by non-basal slip. The active slip system was investigated by the observation of slip bands, etch pit bands and dislocations by TEM. {11-22} <-1-123> second order pyramidal slip is activated in all magnesium and magnesium alloy single crystals, and its yield stress shows anomalous temperature dependence in the range from 77K to 293K, however, the yields stress decreased rapidly with increasing temperature above 293K. The yield stress due to the pyramidal slip in Mg-Li and Mg-Zn alloy were lower than that of pure magnesium about 20MPa whereas the stress of Mg-Zn at 77K was about two times higher than pure magnesium.


2018 ◽  
Vol 941 ◽  
pp. 1242-1247
Author(s):  
Shinji Ando ◽  
Hiroaki Rikihisa ◽  
Masayuki Tsushida ◽  
Hiromoto Kitahara

In this study, to investigate effects of yttrium and other elements for non-basal slips, magnesium alloy single crystals were stretched parallel to basal plane in various temperatures, and polycrystalline magnesium alloys were also tested to estimate contribution of non-basal slips to their tensile deformation behaviour. In pure magnesium single crystals, second order pyramidal (c+a) slip (SPCS) was observed at 298K. Above room temperature, first order pyramidal (c+a) slip (FPCS) was active. In the Mg - (0.6-0.9) Y alloy single crystals, FPCS was observed at 77K to 298K, while yield stress of the Mg-Y alloy single crystals was higher than that of pure magnesium. In tensile test of polycrystalline specimen, slips lines of non-basal slip systems such as SPCS, FPCS and prismatic slip were observed even at yielding in addition to basal slip lines. Among the non-basal slips, activities of FPCS and prismatic slips were increased with increasing strain in Mg - Y alloy polycrystals. Our study suggested that active non-basal slip system in tension parallel to basal plane is (c+a) pyramidal slip and enhanced ductility of magnesium - yttrium alloy would be caused from increased activity of FPCS by yttrium addition.


1996 ◽  
Vol 460 ◽  
Author(s):  
M. Moriwaki ◽  
K. Ito ◽  
H. Inui ◽  
M. Yamaguchi

ABSTRACTThe deformation behavior of single crystals of Mo(Si,Al)2 with the C40 structure has been studied as a function of crystal orientation and Al content in the temperature range from room temperature to 1500°C in compression. Plastic flow is possible only above 1100°C for orientations where slip along <1120> on (0001) is operative and no other slip systems are observed over whole temperature range investigated. The critical resolved shear stress for basal slip decreases rapidly with increasing temperature and the Schmid law is valid. Basal slip appears to occur through a synchroshear mechanism, in which a-dislocations (b=1/3<1120>) dissociate into two synchro-partial dislocations with the identical Burgers vector(b*1/6<1120>) and each synchro-partial further dissociates into two partials on two adjacent planes.


2018 ◽  
Vol 941 ◽  
pp. 1474-1478
Author(s):  
Yelm Okuyama ◽  
Masaki Tanaka ◽  
Tetsuya Ohashi ◽  
Tatsuya Morikawa

The effect of the activated slip systems on the temperature dependence of yield stress was investigated in α-Ti by using crystal plasticity finite element method. A model for finite element analysis (FEA) was constructed based on experimental results. The displacement in FEA was applied up to the nominal strain of 4% which is the same strain as the experimental one. Stress-strain curves were obtained, which corresponds to experimental data taken every 50 K between 73 K and 673 K. The used material constants which are temperature dependent were elastic constants, and lattice friction stresses. The lattice friction stresses of basal slip systems were set to be higher than that of pyramidal slip systems at 73 K. Then, the lattice friction stresses were set to be closer as the temperature increases. It was found that the activation of slip systems is strong temperature dependent, and that the yield stress depends on the number of active slip systems.


2016 ◽  
Vol 80 (5) ◽  
pp. 334-339 ◽  
Author(s):  
Kazutaka Fukuda ◽  
Yuta Koyanagi ◽  
Masayuki Tsushida ◽  
Hiromoto Kitahara ◽  
Tsuyoshi Mayama ◽  
...  

Author(s):  
S.-J. Chen

An understanding of the micromechanisms which occur during the shock deformation of hard ceramic materials would be helpful to the development and optimization of these materials in ballistic environments. Previous studies of shock loaded alumina show evidence of plastic flow by basal slip 1/3<110> (0001), basal twinning, pyramidal slip 1/3<010>{113} and prismatic slip 1/3<101>(110), It has also been observed that the grain boundary and interphase material (e. g. glass) play an important role in determining the microstructural characteristics. In order to elucidate the response of different slip systems, as a function of the impact orientation and the magnitude of peak pressure, some experiments with single crystal alumina (sapphire) have been carried out and the preliminary results are presented here.


2021 ◽  
Vol 1016 ◽  
pp. 516-521
Author(s):  
Tomohiro Hanada ◽  
Masayuki Tsushida ◽  
Hiromoto Kitahara ◽  
Shinji Ando

Tensile tests of Mg-Y single crystals with different yttrium concentrations: 0.07 and 0.3 at.% were carried out to investigate effects of yttrium on pyramidal <c+a> slip system. In Mg-0.07at%Y alloy single crystals, {11 2}< 23> second order pyramidal <c+a> slip was activated and yield stress increased, compared to pure Mg single crystals. On other hand, in Mg-0.3at%Y alloy single crystals, {10 1}< 23> first order pyramidal <c+a> slip was activated and yield stress increased, compared to Mg-0.07at%Y alloy single crystals. The change in slip system by yttrium addition would be caused by increasing critical resolved shear stress (CRSS) for second order pyramidal slip.


2012 ◽  
Vol 535-537 ◽  
pp. 924-927
Author(s):  
Wang Tao ◽  
Mi Lin Zhang ◽  
Shu Jin Zhao ◽  
Chun Mei Song ◽  
Cheng Ju

Mg-8.5Li-1Al-1Ce alloys were prepared with vacuum induction melting method. Uniaxial rolling deformation of alloys was obtained by two-roll milling. The effect of rolling deformation was studied on the microstructure and mechanical properties of Mg-8.5Li-1Al-1Ce. The results show that the microstructure morphologies of α-phase, β-phase and Al2Ce-phase go through different changes under different rolling percentages, and the mechanical properties are improved with increasing deformation. Besides the basal slip system, the prism and pyramidal slip systems are also activated in α(Mg) phase, with all the slip systems in β(Li) phase being uniformly activated.


Sign in / Sign up

Export Citation Format

Share Document