Research on Deformation Permeability Changing Law during Snake Rolling Process

2014 ◽  
Vol 788 ◽  
pp. 367-371
Author(s):  
Xiao Jin Liu ◽  
Lian Yun Jiang ◽  
Guo Yuan ◽  
Guo Dong Wang

In order to refine the microstructure and improve the mechanical properties of the thicker steel plate, the large rolling reduction should be conducted. Confined to the biting angle of rolling mill, the maximum press quantity is constant. The research indicates that shear stress produced in the deformation region during snake rolling process is helpful and the snake rolling method can be used in the thick steel plate production. The effective strain of steel plate with various roller speed ratio, plate thickness, fraction and roller speed was determined by numerical calculation method. By comparison, the effective strain changing law was obtained. The calculation results indicate that compared to traditional rolling process, the effective strain produced in the plate can be improved with the increase of roller speed ratio, and the deformation permeability can also be improved.

2021 ◽  
Vol 118 (2) ◽  
pp. 205
Author(s):  
Lian-Yun Jiang ◽  
Jin-Bo Huang ◽  
Tao Zhen ◽  
Yao-Yu Wei ◽  
Zhen-Lei Li

The snake rolling can keep the plate shape well, and the larger shear strain produced by the snake rolling is conducive to the deformation penetrating into the center of the heavy plate. So it provides a new method for producing the high-performance heavy steel plate. However, there is little research on the plate curvature modeling which is the key to achieve the snake rolling process. The deformation region was divided into four different zones at most which was depended on the positions of the two neutral points, and this number could be dropped to three or two in some other conditions. It was divided into three different cases according to the neutral point position: I, II, III and IV; I, II and IV; II and IV. The unit pressure and the accumulated shear strain deviation between the top and bottom portions of the plate with every case were established, and the plate curvature caused by shear strain was calculated on this basis. The plate curvature caused by the axial strain was also calculated according to the flow criterion. The approximations are corrected by a fitting coefficient E. The homogeneity coefficient E was introduced during the plate curvature modeling process to make the model more accurate. Then the total plate curvature model was established. The simulation of snake rolling process is carried out by using ANSYS LS-DYNA, and the plate curvature results are compared with the theoretical method. The results showed that the maximum and minimum relative error of the model was 11.61% and 0.28% compared to the simulation method, which can be applied for the online plate curvature control application with the effect of some self-learning methods. The plate curvature affecting law with the different process parameters (roll offset, roll speed ratio, rolling reduction, plate thickness and so on) was obtained in this paper. The research about the plate curvature modeling will provide important references for the heavy steel plate snake rolling production.


2013 ◽  
Vol 718-720 ◽  
pp. 725-732
Author(s):  
Kuang I Chang ◽  
Weber Yi Yuan Lin ◽  
Bor Nian Chuang ◽  
Kuang Fu Huang

This paper mainly describes application of non-contact laser thickness gauge in steel plate rolling process, including workstation site thickness measurement, data collection, information analysis and integration with ERP system, as well as problems may arise during applications and sustainable development in the future. Through the system development to realize traditional steel plate rolling industry information planning, paperless operations, increase work efficiency, enhance product quality and zero defective products. Integrated design of steel plate thickness measurement and tachometer, to understand the pros and cons of output products right after steel plate rolling, and do product level classification immediately to assist enterprises to save manpower, time and loss cost of export defective products to the market, and eventually increase products competition and profits.


2008 ◽  
Vol 580-582 ◽  
pp. 89-92
Author(s):  
Joon Sik Park ◽  
B.Y. Jung ◽  
Hiroshi Yajima ◽  
Jong Bong Lee

In this study, the effect of thickness on the fracture toughness of the steel plate with the thickness of 80mm has been investigated by the wide plate tensile test and ESSO test. The fracture toughness for crack initiation and propagation was evaluated quantitatively for the full thickness specimen. It was found that EH-36 grade steel with the thickness of 80mmt showed the KIC value of 164kgf/mm1.5 at -145°C. Also, large-scale ESSO test result showed that the steel with the thickness of 80mm had 520kgf/mm1.5 at -10°C. Although it was known that the fracture toughness decreases with the increase of the plate thickness, EH-36 grade steel with the thickness of 80mm had enough values of fracture toughness to prevent the crack initiation and arrest the brittle crack propagation.


2021 ◽  
Vol 11 (19) ◽  
pp. 9111
Author(s):  
Seon-Chil Kim

X-ray shields used for medical purposes are manufactured using lead, which is inexpensive and easy to manufacture. However, as lead can be a major factor contributing toward environmental contamination, such as lead poisoning, a radiation-shielding plate was manufactured in this study using a tungsten plate, an eco-friendly material, through a rolling process at different temperatures. In addition, the shielding plate produced via the hot-rolling method exhibited better shielding performance than that of the plate produced using the cold-rolling method, and the multilayer structure was well formed, as indicated in the cross-sectional image analysis. Upon applying a peak voltage of 100 kVp to the X-ray tube, the shielding performance observed was 80% and 96% when the plate thickness was 0.1 mm and 0.3 mm, respectively. Therefore, it is expected that, in the future, the pure tungsten-based shield presented in this study will replace lead plates, owing to its superior standardization and reproducibility of the shielding performance.


Author(s):  
Yusuke Terazawa ◽  
Katsuyuki Ichimiya ◽  
Keiji Ueda ◽  
Satoshi Igi ◽  
Minoru Suwa ◽  
...  

Abstract Recently, the installation areas of offshore structures has expanded into deep sea areas, and as a result, strength and plate thickness of the steel plate required for the offshore structures have become higher. And the main property of offshore structure steel is the crack tip opening displacement (CTOD) property of multi-pass weld joint. Thus, the developed steel was designed to improve HAZ toughness of multi-pass weld joint. Firstly, in order to achieve both high strength of the base metal and good HAZ toughness, the TMCP technology was applied, and Ceq. was minimized. And to obtain fine HAZ microstructure, fine TiN and Ca(O,S) particles having pinning effect and nucleation site effect were used. Finally, to decrease the formation of brittle martensite-austenite constituent (M-A) in HAZ of multi-pass weld joint, Si content was decreased. By using above technologies, the YS 500MPa class thick steel plate with good weld joint CTOD property have been developed.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Lian-yun Jiang ◽  
Qing-cheng Meng ◽  
Chun-jiang Zhao ◽  
Shou-xin Wang ◽  
Yan-wei Liu

The deformation in the inner region along the thickness of the heavy steel plate can be improved by snake rolling method. Then the microstructure and property will be refined and the crack in the inner region may be avoided. Therefore, the in-depth research on snake rolling method mechanics parameter modeling should be conducted to guide production. A snake rolling process with the same roll diameters and different angular velocity was conducted in this paper. The rolling deformation zone will be divided into back slip zone, front slip zone, cross shear zone, and reverse deflection zone according to the direction of the friction during the snake rolling process. The four zones may not exist at the same time. The boundary conditions of existence of the back slip zone, front slip zone, and cross shear zone were established according to the relationship between threading angle and neutral angle. The calculating models which were used to calculate the snake rolling mechanical parameters including the rolling force and rolling torque were set up. The calculated models of unit compressive pressure in the four zones were set up by the slab method, and on this basis the accurate calculating models of the rolling force and rolling torque were set up according to the composition of the rolling deformation zone and the boundary condition. The mechanical parameters were calculated by the analytical method and the numerical method, and the relative deviation is less than 6% which can satisfy the industrial requirement. The present analytical model can predict the characteristics during snake rolling easily and quickly and it is also suitable for online control applications.


2015 ◽  
Vol 60 (1) ◽  
pp. 415-418 ◽  
Author(s):  
Z. Pater ◽  
J. Tomczak ◽  
T. Bulzak

Abstract The paper describes a new method for producing stepped rail axles. The method is based on the skew rolling process. With this method, the product is formed by three tapered rolls located every 120° on the perimeter of the billet. Positioned askew to the centerline of the billet, the rolls rotate in the same direction and with the same velocity. At the same time, they get closer together or go apart depending on the desired cross sectional reduction of an axle step. In addition, the workpiece is shifted lengthwise relative to the rolls by the translational motion of the workpiece-holding chuck. In order to verify the designed method for producing rail axles, a series of numerical simulations were performed using the Simufact. Forming v.12 simulation software. The numerical modeling enabled the determination of maps of the effective strain and temperature in the finished product as well as variations in the loads and torques during rolling. The numerical results unambiguously confirm that the skew rolling method can be applied to form parts of considerable dimensions (the modeled axles had a length of 2146 mm and their maximum diameter was 202 mm).


2021 ◽  
Vol 1885 (3) ◽  
pp. 032076
Author(s):  
Xiuhua Tian ◽  
Tianliang Fu ◽  
Zhaodong Wang ◽  
Guodong Wang

Sign in / Sign up

Export Citation Format

Share Document