A Simple and Efficient Parametric Design Approach for Marine Electrical Machines

2014 ◽  
Vol 792 ◽  
pp. 367-372
Author(s):  
Charalampos Patsios ◽  
Minos E. Beniakar ◽  
Antonios G. Kladas ◽  
John Prousalidis

In this paper a parametric design procedure of electrical machines used in naval propulsion systems is developed. The algorithm uses a series of design characteristics i.e. the type of the machine, the winding configuration and key geometrical properties, as parameters and is implemented on MATLAB® script allowing for a straightforward incorporation with other development tools. Using the proposed algorithm, two of the most common machine configurations involved in marine electrical propulsion systems i.e. the Induction Motor and the Synchronous Permanent Magnet Motor, are designed and 2D finite element modeling and analysis is performed. MATLAB® is used to interact with the FEMM software package through ActiveX framework, allowing for a detailed calculation of the electromagnetic properties of the machines examined.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


2012 ◽  
Vol 479-481 ◽  
pp. 1403-1408
Author(s):  
Gang Lian Zhao ◽  
Yi Jiang ◽  
Yu Jun Chen ◽  
Yan Li Ma

Based on software Pro/ENGINEER and Visual C++ 2005,sub-module of parametric design of assembly with wide universality was done by using Pro/TOOLKIT, and the design procedure was introduced in details. Assembly relation of sub-components is transformed into binary tree structure to store and search parts, and the assembly relation is displayed by CTreeCtrl control. The corresponding parts can be quickly found in the binary tree. Engineering drawing was automatically generated and displayed by ProductView after loading a part, and in this way dimensions of different parts can be modified according to engineering drawing in asynchronous mode. The sub-module can meet the needs of parametric design of parts in the integrated simulation system.


1979 ◽  
Vol 23 (04) ◽  
pp. 260-271
Author(s):  
Blaine R. Parkin ◽  
Joe Fernandez

A new design theory for fully cavitating hydrofoils is based upon a linearized inverse theory of two-dimensional cavity flows at arbitrary cavitation number. The cavity surfaces are assumed to originate at the leading and trailing edges of the wetted surface. This paper reviews and completes the basic theory, which leads to a parametric design technique. In the resulting design procedure, one specifies the design lift coefficient, the cavitation number and the upper cavity thickness at two points along the profile chord. A prescribed pressure distribution shape is also selected. These quantities determine the profilelesgn, which consists of the upper cavity and wetted surface contours, the design angle of attack, the cavity length, the drag coefficient, the moment coefficient and the lift-to-drag ratio. The chief new feature of the third design procedure is that the designer can now prescribe two points on the cavity surface instead of one as heretofore. Although the designer must observe certain constraints when he specifies these two values of cavity thickness, the new procedure is still found to be more general and more flexible than design procedures studied previously.


2013 ◽  
Vol 448-453 ◽  
pp. 2199-2202
Author(s):  
Shi Wei Zhou ◽  
Yi Min Xie ◽  
Qing Li ◽  
Xiao Dong Huang

Permittivity signifies a key component to metamaterial which can achieve negative index of refraction, but it has not been sufficiently addressed in computational design. This paper aims to attain negative permittivity through a topology optimization approach and provides an example equivalent to electric inductive-capacitive resonator. Similar to split ring resonator, this locally self-contained (without the demand for inter-cell connection) resonator allows keeping bulk electromagnetic properties homogeneously, facilitating mass fabrication, and realizing single sampling test.


2013 ◽  
Vol 278-280 ◽  
pp. 178-183
Author(s):  
Jian Hua Wang ◽  
Hang Zhang ◽  
Yong Sheng Zhao ◽  
Xiao Lei Song

This paper introduces the development of a tool for modeling and analysis of BTF toolholder-spindle system, based on ANSYS software. The tool is developed in parametric design method. Most parameters are defined automatically except a few parameters requiring users to input, which improves the modeling efficiency greatly. The interface joint of the BTF toolholder-spindle is established by adopting spring-damping model and defined by custom element unit Matrix27. The proposed model reflects the characters of the joint on the properties of BTF toolholder-spindle effectively. A case study is given to verify the efficiency and accuracy of the developed tool.


Author(s):  
Giorgos A. Strofylas ◽  
Georgios I. Mazanakis ◽  
Ioannis K. Nikolos

A software tool named “T4T” (Tools for Turbomachinery) has been developed for the parametric design of turbomachinery and wind turbine blades. The complete design procedure is object-oriented and parametric, providing the ability to the user to define various types of blades. It has been developed in QT C++, utilizing OpenCascade graphical and computational libraries. The software allows the user to design the outer surface either by specifying some physical parameters for each blade section, or by directly interpolating a surface through a cloud of points. The new/enhanced version of “T4T” software tool, introducing the definition of internal blade structure for wind turbines rotors, is fully parametric and customizable, allowing the user for defining the internal blade structure, including shear webs. The computational procedure finally produces compound solids, which can be further imported to mesh generation and analysis software through standard geometry exchange protocols, for cooperation with CFD and CSD solvers.


2021 ◽  
Vol 11 (24) ◽  
pp. 12044
Author(s):  
Nikos Ath. Kallioras ◽  
Nikos D. Lagaros

Design and manufacturing processes are entering into a new era as novel methods and techniques are constantly introduced. Currently, 3D printing is already established in the production processes of several industries while more are continuously being added. At the same time, topology optimization has become part of the design procedure of various industries, such as automotive and aeronautical. Parametric design has been gaining ground in the architectural design literature in the past years. Generative design is introduced as the contemporary design process that relies on the utilization of algorithms for creating several forms that respect structural and architectural constraints imposed, among others, by the design codes and/or as defined by the designer. In this study, a novel generative design framework labeled as MLGen is presented. MLGen integrates machine learning into the generative design practice. MLGen is able to generate multiple optimized solutions which vary in shape but are equivalent in terms of performance criteria. The output of the proposed framework is exported in a format that can be handled by 3D printers. The ability of MLGen to efficiently handle different problems is validated via testing on several benchmark topology optimization problems frequently employed in the literature.


Sign in / Sign up

Export Citation Format

Share Document