scholarly journals EOS parameters and elastic properties of cubic rock-salt BP

2019 ◽  
Vol 7 (1) ◽  
pp. 7
Author(s):  
Salah DAOUD

The present work aims to study the equation of state (EOS) under compression up to 100 GPa, and the elastic properties of cubic rocksalt Boron phosphide (BP) material. The EOS parameters and the elastic constants of our material of interest were predicted using plane wave-pseudopotential (PW-PP) approach in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the generalized gradient approximation (GGA) for the exchange-correlation functional. The Young modulus, the Poisson's ratio, the sound velocity, the Debye temperature and the melting temperature of the aggregate material were also presented. The results obtained are in general in good agreement compared to other data of the literature.

2014 ◽  
Vol 805 ◽  
pp. 690-693
Author(s):  
Carlos Alberto Soufen ◽  
Marcelo Capella de Campos ◽  
Carlos Alberto Fonzar Pintão ◽  
Momotaro Imaizumi

The elastic properties of a Ti3Al intermetallic compound were studied using full potential (FP LAPW ) with the APW+lo method. The FP-LAPW is among the most accurate band structure calculations currently available and is based on the density functional theory with general gradient approximation for the exchange and correlation potential. This method provides the structural properties of the ground state as bulk modulus, equilibrium lattice parameter, and equilibrium minimum energy, and the elastic properties as shear modulus, young modulus, Zener coefficient (anisotropy), and Poisson coefficient. The calculated elastic properties are coherent with the elastic properties of the material.


2018 ◽  
Vol 6 (2) ◽  
pp. 53
Author(s):  
Salah Daoud ◽  
Rabie Mezouar ◽  
Abdelfateh Benmakhlouf

The present work aims to investigate the structural parameters and the piezoelectric coefficients of cubic zinc-blende Aluminum phosphide (AlP) under high pressure up to 21 GPa, using plane wave-pseudopotential (PW-PP) approach in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the generalized gradient approximation (GGA) for the exchange-correlation functional. The results obtained are analyzed and compared with other data of the literature. The structural parameters and the piezoelectric coefficients calculated here agree well with other data of the literature. We found also that both the direct and converse piezoelectric coefficients increase with increasing pressure up to 21 GPa. 


2014 ◽  
Vol 92 (9) ◽  
pp. 1058-1061 ◽  
Author(s):  
Anurag Srivastava ◽  
Bhoopendra Dhar Diwan

The present paper discusses the density functional theory based stability analysis of zirconium nitride and hafnium nitride in its rocksalt (B1), CsCl (B2), and zinc blende (B3) type phases. The ground state total energy calculation approach of the system has been used through the generalized gradient approximation parameterized with revised Perdew–Burke–Ernzerhof as exchange correlation functional. The present theoretical analysis confirms the stability trend of phases from most stable to less stable as B1 → B2 → B3. The study also reports the analysis of elastic properties of these nitrides in its most stable B1-type phase.


2005 ◽  
Vol 893 ◽  
Author(s):  
Sa Li ◽  
Rajeev Ahuja ◽  
Borje Johansson

AbstractWe have studied the crystal structure of the AmCm binary alloy under high pressure by means of first-principles self-consistent total-energy calculations using the generalized gradient approximation (GGA) for the density functional theory (DFT). The virtual crystal approximation (VCA) is used for the description of the alloy system. In the present study, we investigated the double hexagonal (P63/mmc) structure, the face centered cubic (Fm3m) structure, the face-centered orthorhombic (Fddd) structure and the primitive orthorhombic (Pnma) structure for the AmCm alloy. Antiferromagnetic calculations have been compared with ferromagnetic calculations for all these phases. Our results are in general good agreement with recent experiment performed by Lindbaum et al. [J. Phys.: Condens. Matter. 15, S2297 (2003)].


Author(s):  
Adewumi I. Popoola ◽  
Adebayo T. Adepoju

For thermoelectric applications, semiconductors are generally better than metals and insulators. PtAs2 and PtP2 are indirect energy gap semiconductors that have been predicted with high thermo-powers (PtP2 having higher thermopower than PtAs2). The crystal structure and the electronic structure of PtAs2 and PtP2 are similar except for the energy band gap of PtP2 that is wider than that of PtAs2. The generalized gradient approximation of the Density Functional Theory (DFT), the Density Functional Perturbation Theory (DFPT) were used to explore the full elastic tensors, phonon dispersion and the thermodynamics of PtP2 and PtAs2. This was done to understand the link, if any, between high thermo-power materials and the results. The two compounds are dynamically and elastically stable with higher mechanical properties recorded for PtP2 over PtAs2. The calculated entropy, vibration free energy and the heat capacity at constant volume for PtAs2 (PtP2) were 354.51 (264.18) J/K; -9.21 (27.84) kJ and 276.04 (250.36) J/K at 300 K respectively. The low frequency acoustic modes are between 100 - 170 cm-1 for PtAs2 while it is between100 - 190 cm-1 for PtP2. The calculated high frequency transverse optical (TO) mode for PtP2 is 410 cm-1 while it is 250 cm-1 for PtAs2.  Further analysis of the phonons spectrum showed that additional bond-bending modes can be created in PtP2 than in PtAs2.  All the results points toward PtP2 as better material over PtAs2 for thermoelectric application and these, with or without the knowledge of the energy bandgap can serve to guide material selection/modelling.


2005 ◽  
Vol 893 ◽  
Author(s):  
Börje Johansson ◽  
Sa Li ◽  
Eyvaz Eyvaz ◽  
Rajeev Ahuja

AbstractWe have studied the crystal structure of Pa metal under high pressure by means of first-principles calculations based on the density functional theory (DFT) using the generalized gradient approximation (GGA). The body centered tetragonal (bct) to orthorhombic (α-U) phase transition was calculated to take place at 29 GPa and with a volume change of 1.3%. The calculated c/a for the bct phase reaches the ideal c/a value (0.816) at around 50 GPa. A bulk modulus of 113 GPa was derived from a Murnaghan equation of state (EOS) fitting procedure. Our results are in general good agreement with recent experiment performed by Haire et al. [Phys. Rev. B 67, 134101 (2003)]. We have also calculated the phonon spectrum for fcc, bct and bcc Pa. The latter gives imaginary frequencies showing the low temperature instability of this crystallographic phase for Pa.


2012 ◽  
Vol 571 ◽  
pp. 292-295
Author(s):  
Ben Hai Yu ◽  
Chao Xu ◽  
Dong Chen

We report ab initio calculations of the structural, elastic and optical properties of the compound LaB6 as a function of pressure. The computation is based on the density functional theory in combination with the generalized gradient approximation functional. The calculated lattice constants and elastic moduli are compared with the theoretical results and a good agreement is found. LaB6 can retain its mechanical stability in the pressure range of 0-20GPa. Besides, the frequency-dependent dielectric function, absorption coefficient and loss function of LaB6 are also obtained. The calculated static dielectric function is 8.8 at 0GPa and 5GPa. The computed results should be testified by experiments.


2020 ◽  
Vol 23 (04) ◽  
pp. 355-360
Author(s):  
H.A. Ilchuk ◽  
◽  
D.V. Korbutyak ◽  
A.I. Kashuba ◽  
B. Andriyevsky ◽  
...  

Elastic properties of the CdTe1–xSex (x = 1/16) solid solution in the framework of the density functional theory calculations have been investigated. The structure of the sample has been constructed using that of the original binary compound CdTe, which crystallizes in the cubic phase. The Young modulus, shear modulus, bulk modulus and Poisson ratio have been calculated theoretically. On the results for elastic coefficients, value of acoustic velocity and Debye temperature have been obtained. The obtained values are in good agreement with experimental data.


2003 ◽  
Vol 800 ◽  
Author(s):  
X. Lu ◽  
S. Hanagud

AbstractThe thermodynamically complete equation of state P=P(ρ,T) for a intermetallic mixture of nickel and aluminum is obtained via first principle calculations for pressures up to 300GPa and temperatures up to 1000K. The calculations for the static-lattice EOS are carried out in the framework of the density functional theory (DFT), using generalized gradient approximations and ultrasoft psuedopotentials. The phonon modes are calculated by using the density functional perturbation theory (DFPT). First, the EOS for each species is obtained based on ab initio prediction of the electron ground state and thermal excitations. Then, the mixture theories are utilized to obtain the EOS for the mixture. Two mixture theories are proposed, which correspond to the two limiting cases. The nature of the real mixture is intermediate to those of the two idealized mixtures and hence can be modeled as a weighted combination of the two cases. The Comparisons of the EOS for nickel and aluminum obtained from existing shock Hugoniot data show good agreement with the theoretical results.


2012 ◽  
Vol 512-515 ◽  
pp. 864-868 ◽  
Author(s):  
Dong Qiu ◽  
Xue Feng Lu ◽  
Bai Hai Li ◽  
Hong Jie Wang

Based on the density functional theory within the generalized gradient approximation (GGA) method, the geometric structure, electronic and dielectric properties of rare earth (La and Y) doped β-Si3N4 were studied and the origin of the differences and similarities among the rare earths (La and Y) characterized in this work were discussed. The fully relaxed structural parameters of β-SiN4 crystal are found to be in good agreement with experimental data. The formation energy calculations indicate that both La and Y atoms are preferentially doped on the Si sites, which is in agreement with previous experimental observations. Furthermore, the calculated band gap of the doped structures decreases significantly, specifically, the larger La atom results in narrower band gap than that of Y doped β-Si3N4. The reason was extensively analyzed by the density of states (DOS). Subsequently, the dielectric function, absorption coefficient of the polycrystalline were compared with these values for plane polarized at [100] and [001] directions. The calculations show that the optical dielectric constant in the rare earth (especially La) doped structures increase remarkably, compared with the undoped β-Si4N4.


Sign in / Sign up

Export Citation Format

Share Document