EBSD Sample Preparation: High Energy Ar Ion Milling

2015 ◽  
Vol 812 ◽  
pp. 309-314 ◽  
Author(s):  
Zoltán Dankházi ◽  
Szilvia Kalácska ◽  
Adrienn Baris ◽  
Gábor Varga ◽  
Zsolt Radi ◽  
...  

Surface quality development on series of metal samples was investigated using a new Ar ion milling apparatus. The surface quality of samples was characterized by the image quality (IQ) parameter of the electron backscatter diffraction (EBSD) measurement. Ar ion polishing recipes have provided to prepare a surface appropriate for high quality EBSD mapping. The initial surfaces of samples were roughly grinded and polished. High quality surface smoothness could be achieved during the subsequent Ar ion polishing treatment. The optimal angles of Ar ion incidence and the polishing times were determined for several materials.

MRS Advances ◽  
2016 ◽  
Vol 1 (43) ◽  
pp. 2947-2952
Author(s):  
L. Chen ◽  
Z.-H. Lu ◽  
T.-M. Lu ◽  
I. Bhat ◽  
S.B. Zhang ◽  
...  

ABSTRACTEpitaxial Ge films are useful as a substrate for high-efficiency solar cell applications. It is possible to grow epitaxial Ge films on low cost, cube textured Ni(001) sheets using CaF2(001) as a buffer layer. Transmission electron microscopy (TEM) analysis indicates that the CaF2(001) lattice has a 45o in-plane rotation relative to the Ni(001) lattice. The in-plane epitaxy relationships are CaF2[110]//Ni[100] and CaF2[$\bar 1$10]//Ni[010]. Energy dispersive spectroscopy (EDS) shows a sharp interface between Ge/CaF2 as well as between CaF2/Ni. Electron backscatter diffraction (EBSD) shows that the Ge(001) film has a large grain size (∼50 μm) with small angle grain boundaries (< 8o). The epitaxial Ge thin film has the potential to be used as a substrate to grow high quality III-V and II-VI semiconductors for optoelectronic applications.


2016 ◽  
Vol 49 (15) ◽  
pp. 155106 ◽  
Author(s):  
Jumpei Kamimura ◽  
Manfred Ramsteiner ◽  
Uwe Jahn ◽  
Cheng-Ying James Lu ◽  
Akihiko Kikuchi ◽  
...  

2011 ◽  
Vol 702-703 ◽  
pp. 169-172 ◽  
Author(s):  
Robert Chulist ◽  
Andrea Böhm ◽  
E. Rybacki ◽  
T. Lippmann ◽  
C.G. Oertel ◽  
...  

The texture of polycrystalline Ni50Mn29Ga21alloys fabricated by high pressure torsion (HPT) was investigated with high-energy synchrotron radiation. HPT was performed at temperatures between 873K and 1173K under a hydrostatic pressure of 400 MPa. During HPT above 973K the initial cyclic fibre texture changes to a strong cube and a weak F component. Below 973K a strong rotated cube and weak F and C components develop. Additionally, electron backscatter diffraction reveals that samples deformed at low temperature do not completely transform to martensite giving rise to residual austenite.


2021 ◽  
Vol 12 ◽  
pp. 965-983
Author(s):  
Annalena Wolff

Electron backscatter diffraction (EBSD) is a powerful characterization technique which allows the study of microstructure, grain size, and orientation as well as strain of a crystallographic sample. In addition, the technique can be used for phase analysis. A mirror-flat sample surface is required for this analysis technique and different polishing approaches have been used over the years. A commonly used approach is the focused ion beam (FIB) polishing. Unfortunately, artefacts that can be easily induced by Ga FIB polishing approaches are seldom published. This work aims to provide a better understanding of the underlying causes for artefact formation and to assess if the helium ion microscope is better suited to achieve the required mirror-flat sample surface when operating the ion source with Ne instead of He. Copper was chosen as a test material and polished using Ga and Ne ions with different ion energies as well as incident angles. The results show that crystal structure alterations and, in some instances, phase transformation of Cu to Cu3Ga occurred when polishing with Ga ions. Polishing with high-energy Ne ions at a glancing angle maintains the crystal structure and significantly improves indexing in EBSD measurements. By milling down to a depth equaling the depth of the interaction volume, a steady-state condition of ion impurity concentration and number of induced defects is reached. The EBSD measurements and Monte Carlo simulations indicate that when this steady-state condition is reached more quickly, which can be achieved using high-energy Ne ions at a glancing incidence, then the overall damage to the specimen is reduced.


2014 ◽  
Vol 1760 ◽  
Author(s):  
Christine Tränkner ◽  
Aurimas Pukenas ◽  
Jelena Horky ◽  
Michael Zehetbauer ◽  
Werner Skrotzki

ABSTRACTNiAl, YCu and TiAl polycrystals with B2 and L10 structure, respectively, have been deformed by high pressure torsion (HPT) at temperatures between 20°C and 500°C at a hydrostatic pressure of 8 GPa to high shear strains. Local texture measurements were done by diffraction of high-energy synchrotron radiation and X-ray microdiffraction. In addition, the microstructure was analyzed by electron backscatter diffraction (EBSD). Besides typical shear components an oblique cube component is observed with quite large rotations about the transverse direction. Based on the temperature dependence of this component as well as on microstructure investigations it is concluded that it is formed by discontinuous dynamic recrystallization. The influence of high pressure on recrystallization of intermetallics at low temperatures is discussed.


2013 ◽  
Vol 19 (4) ◽  
pp. 1007-1018 ◽  
Author(s):  
Angela Halfpenny ◽  
Robert M. Hough ◽  
Michael Verrall

AbstractPreparation of high-quality polished sample surfaces is an essential step in the collection of microanalytical data on the microstructures of minerals and alloys. Poorly prepared samples can yield insufficient or inconsistent results and, in the case of gold, potentially no data due to the “beilby” layer. Currently, preparation of ore samples is difficult as they commonly contain both hard and soft mineral phases. The aim of our research is to produce suitably polished sample surfaces, on all phases, for electron backscatter diffraction analysis. A combination of chemical–mechanical polishing (CMP) and broad ion-beam polishing (BIBP) was used to tackle the problem. Our results show that it is critical to perform CMP first, as it produces a suitable polish on the hard mineral phases but tends to introduce more damage to the soft mineral surfaces. BIBP is essential to produce a high-quality polish to the soft phases (gold). This is a highly efficient method of sample preparation and is important as it allows the complete quantification of ore textures and all constituent mineral phases, including soft alloys.


2007 ◽  
Vol 1012 ◽  
Author(s):  
Helio Moutinho ◽  
Ramesh Dhere ◽  
Chun-Sheng Jiang ◽  
Bobby To ◽  
Mowafak Al-Jassim

AbstractIn electron-backscatter diffraction, crystalline orientation maps are formed while the electron beam of an SEM scans the sample surface. EBSD requires a flat sample to avoid shadowing of the electrons from the detector by surface features. In this work, we investigate the preparation of CdTe samples deposited by close-spaced sublimation for EBSD analysis. Untreated samples were rough, resulting in areas with no EBSD signal. We processed the samples by polishing and ion-beam milling. Polishing produced flat samples, but low-quality EBDS data, because the top surface of the samples had poor crystallinity. In contrast, ion-beam milling proved to be suitable for producing flat samples with minimal surface damage, yielding good EBSD data. We also analyzed the samples with atomic force microscopy, and correlated the quality of the EBSD data with sample roughness. The EBSD data showed that the CdTe films were randomly oriented and had columnar growth and a high density of <111> twin boundaries.


2009 ◽  
Vol 635 ◽  
pp. 195-199 ◽  
Author(s):  
Robert Chulist ◽  
Andrea Böhm ◽  
Thomas Lippmann ◽  
Werner Skrotzki ◽  
Welf Guntram Drossel ◽  
...  

Up to now most of the research on Ni-Mn-Ga alloys was concentrated on single crystals. However, there is a great interest in polycrystals for technical applications. Recently, polycrystalline Ni50Mn29Ga21 rods of 25 mm diameter and 400 mm length were prepared by hot extrusion. The <100> <110> double fibre texture of the extruded rods was measured with high-energy synchrotron radiation. The microstructure after hot extrusion was analyzed with electron backscatter diffraction. Within the recrystallized grains all three martensitic variants have developed during cooling. Variants with twin boundaries preferentially aligned along the extrusion direction predominate.


2015 ◽  
Vol 812 ◽  
pp. 285-290 ◽  
Author(s):  
Tibor Berecz ◽  
Szilvia Kalácska ◽  
Gábor Varga ◽  
Zoltán Dankházi ◽  
Károly Havancsák

Surface preparation for electron backscatter diffraction (EBSD) measurements requires a lot of time and experience. We chose a lath martensitic iron based alloy to demonstrate the efficiency of ion polishing techniques. The average image quality (IQ) values from the EBSD measurements were assigned to be the characteristic parameter for surface goodness. The ideal ion sputtering time and the angle of incidence were determined, and the corresponding inverse pole figure (IPF) and IQ maps were compared to the mechanical polishing treatment.


Sign in / Sign up

Export Citation Format

Share Document