Preparation and Electrochemical Properties Research of Vanadium-Sol Modified LiFePO4 Cathode Material for Lithium Ion Batteries

2015 ◽  
Vol 814 ◽  
pp. 25-30
Author(s):  
Li Qiang Ye ◽  
Dong Ju Fu ◽  
Jian Jun Chen ◽  
Qing Ma ◽  
Wei Li Zhang ◽  
...  

Vanadium-sol modified LiFePO4 material was prepared by 300 °C calcination in a tube furnace. The modified LiFePO4 material was characterized by X-ray diffraction, field emission scanning electron microscopy, energy disperse spectroscopy and electrochemical impedance spectroscopy. The results indicated that vanadium-sol modified LiFePO4 had higher first cycling efficiency, lower impedance and polarization, and better electrochemical properties at high charge/discharge rates.

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 126 ◽  
Author(s):  
Pei-Chi Cheng ◽  
Bing-Han Li ◽  
Feng-Shuen Tseng ◽  
Po-Ching Liang ◽  
Chia-Her Lin ◽  
...  

Four lithium coordination polymers, [Li3(BTC)(H2O)6] (1), [Li3(BTC)(H2O)5] (2), [Li3(BTC)(μ2-H2O)] (3), and [Li(H2BTC)(H2O)] (4) (H3BTC = 1,3,5-benzenetricarboxylatic acid), have been synthesized and characterized. All the structures have been determined using single crystal X-ray diffraction studies. Complexes 1 and 2 have two-dimensional (2-D) sheets, whereas complex 3 has three-dimensional (3-D) frameworks and complex 4 has one-dimensional (1-D) tubular chains. The crystal-to-crystal transformation was observed in 1–3 upon removal of water molecules, which accompanied the changes in structures and ligand bridging modes. Furthermore, the electrochemical properties of complexes 3 and 4 have been studied to evaluate these compounds as electrode materials in lithium ion batteries with the discharge capacities of 120 and 257 mAhg−1 in the first thirty cycles, respectively.


2014 ◽  
Vol 636 ◽  
pp. 49-53
Author(s):  
Si Qi Wen ◽  
Liang Chao Gao ◽  
Jia Li Wang ◽  
Lei Zhang ◽  
Zhi Cheng Yang ◽  
...  

To improve the cycle performance of spinel LiMn2O4as the cathode of 4 V class lithium ion batteries, spinel were successfully prepared using the sol-gel method. The dependence of the physicochemical properties of the spinel LiCrxMn2-xO4(x=0,0.05,0.1,0.2,0.3,0.4) powders powder has been extensively investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), charge-discharge test and electrochemical impedance spectroscopy (EIS). The results show that as Mn is replaced by Cr, the initial capacity decreases, but the cycling performance improves due to stabilization of spinel structure. Of all, the LiCr0.2Mn1.8O4has best electrochemical performance, 107.6 mAhg-1discharge capacity, 96.1% of the retention after 50 cycles.


2013 ◽  
Vol 06 (03) ◽  
pp. 1350029 ◽  
Author(s):  
YUN CHEN ◽  
DUOQING ZENG ◽  
JUANJUAN PENG ◽  
SHIGUANG HU ◽  
ZHAOHUI LI ◽  
...  

Li2FeSiO4/C composites have been successfully prepared by a combination of solution route and high-temperature solid-state reaction processes. The morphology and crystalline structure were characterized using scanning electron microscope (SEM) and X-ray diffraction (XRD). Effects of calcination temperature on the electrochemical properties of Li2FeSiO4/C composite cathodes were investigated by cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance measurements. The XRD patterns indicate that high-purity Li2FeSiO4 with well-developed crystallinity are obtained above 600°C. The primary particle size was increased by elevating the calcination temperature from 600°C to 750°C. The Li2FeSiO4/C composite synthesized at 650°C delivers the largest initial discharge capacity of 153.2 mAh g-1 with a capacity retention of 93.5% after 30 cycles when tested at a current density of C/16 (1C = 166 mAh g-1) between 1.5 and 4.8 V (vs. Li+/Li ).


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 367
Author(s):  
Yueyue Kong ◽  
Ranran Jiao ◽  
Suyuan Zeng ◽  
Chuansheng Cui ◽  
Haibo Li ◽  
...  

Among the transition metal oxides, the Mn3O4 nanostructure possesses high theoretical specific capacity and lower operating voltage. However, the low electrical conductivity of Mn3O4 decreases its specific capacity and restricts its application in the energy conversion and energy storage. In this work, well-shaped, octahedron-like Mn3O4 nanocrystals were prepared by one-step hydrothermal reduction method. Field emission scanning electron microscope, energy dispersive spectrometer, X-ray diffractometer, X-ray photoelectron spectrometer, high resolution transmission electron microscopy, and Fourier transformation infrared spectrometer were applied to characterize the morphology, the structure, and the composition of formed product. The growth mechanism of Mn3O4 nano-octahedron was studied. Cyclic voltammograms, galvanostatic charge–discharge, electrochemical impedance spectroscopy, and rate performance were used to study the electrochemical properties of obtained samples. The experimental results indicate that the component of initial reactants can influence the morphology and composition of the formed manganese oxide. At the current density of 1.0 A g−1, the discharge specific capacity of as-prepared Mn3O4 nano-octahedrons maintains at about 450 mAh g−1 after 300 cycles. This work proves that the formed Mn3O4 nano-octahedrons possess an excellent reversibility and display promising electrochemical properties for the preparation of lithium-ion batteries.


2013 ◽  
Vol 310 ◽  
pp. 90-94 ◽  
Author(s):  
Xiao Bing Huang ◽  
Hong Hui Chen ◽  
Huang Rong Li ◽  
Qian Peng Yang ◽  
Shi Biao Zhou ◽  
...  

Li2FeSiO4/C and Li1.97Mg0.03FeSiO4/C composites were successfully prepared by a solid-state method. Both samples were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), the charge-discharge test and electrochemical impedance spectra measurement, respectively. It was found that the Li1.97Mg0.03FeSiO4/C composite exhibited an excellent rate capability with a discharge capacity of 144mAh g-1 at 0.2C and 97mAh g-1 at 5C, and after 100 cycles at 1 C, 96% of its initial capacity was retained.


2011 ◽  
Vol 04 (01) ◽  
pp. 61-64 ◽  
Author(s):  
ZHAOHUI LI ◽  
JIAOJUN TANG ◽  
JIE YANG ◽  
CHENG CHENG ◽  
QIZHEN XIAO ◽  
...  

A porous vanadium pentoxide ( V2O5 ) material was prepared through a facile sol-gel route using β-cyclodextrin (β-CD) as template reagent. Its crystal structure and morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively. The electrochemical properties of the as-prepared V2O5 in 1.0 mol l-1 Li2SO4 aqueous electrolyte were investigated by galvanostatic charging/discharging and cyclic voltammetry. The results revealed that the porous V2O5 could deliver the average capacities of 67, 54 and 42 mAh g-1 at the rates of 0.1, 0.5 and 2 C, respectively. The cycling performances of the V2O5/LiMn2O4 cells suggested that the porous V2O5 material could be used as an anode material for aqueous rechargeable lithium-ion batteries.


2011 ◽  
Vol 391-392 ◽  
pp. 1069-1074 ◽  
Author(s):  
Ying Bai ◽  
Feng Wu ◽  
Hua Tong Yang ◽  
Yu Zhong ◽  
Chuan Wu

Spinel LiMn2O4was modified with Y2O3coating by a chemical process. The crystal structures of the as-prepared samples were investigated by X-ray diffraction (XRD). The charge/discharge characteristics of the modified samples were evaluated at different rates between 3.0 and 4.4V. The discharge capacities of 2.0 wt.% Y2O3-coated LiMn2O4are 116 mAh•g−1, 99.7mAh•g−1, 93.3mAh•g−1and 82.9mAh•g−1at 0.1C, 0.5C, 1C and 2C rates (at 20◦C). The cycle abilities improvement of the spinel LiMn2O4coated with Y2O3are demonstrated at elevated temperature (55◦C) and high rates (2C). From the analysis of electrochemical impedance spectroscopy (EIS), the improvement of cycle ability may be attributed to the suppression on the formation of the passivating films and the reduction of Mn dissolution, which result from the surface modification with Y2O3.


2021 ◽  
Author(s):  
Dung V. Trinh ◽  
Mai T. T. Nguyen ◽  
Hue T. M. Dang ◽  
Dung T. Dang ◽  
Hang T. T. Le ◽  
...  

Abstract Nanostructured cathode materials based on Mn-doped olivine LiMnxFe1-xPO4 (x = 0, 0.1, 0.2, and 0.3) were successfully synthesized via a hydrothermal route. X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (SEM), and Raman spectroscopy indicated that the synthesized samples possessed a sphere-like nanostructure and a relatively homogeneous size distribution in the range of 100 - 200 nm. Electrochemical experiments and analysis showed that the Mn doping increased the redox potential and boosted the capacity. While the undoped olivine (LiFePO4) had a capacity of 169 mAh g-1 with a slight reduction (10%) in the initial capacity after 50 cycles (150 mAh g-1), the Mn-doped olivine samples (LiMnxFe1-xPO4) demonstrated reliable cycling tests with negligible capacity loss, reaching 151, 147, and 157 mAh g-1 for x = 0.1, 0.2, and 0.3, respectively. The results from electrochemical impedance spectroscopy (EIS) accompanied by the galvanostatic intermittent titration technique (GITT) confirmed that the Mn substitution for Fe promoted the charge transfer process and hence the rapid Li transport. These findings indicate that the LiMnxFe1-xPO4 nanostructures are promising cathode materials for lithium ion battery applications.


2018 ◽  
Vol 929 ◽  
pp. 33-41 ◽  
Author(s):  
Nofrijon Sofyan ◽  
Adlan Mizan ◽  
Anne Zulfia Syahrial ◽  
Achmad Subhan

Used of carbon pyrolyzed from table sugar in the synthesis of LiFe(1-x)VxPO4/C for lithium ion battery cathode has been examined. The process was begun by synthesizing LiFePO4through a hydrothermal method with the precursors of LiOH, NH4H2PO4and FeSO4.7H2O. The as-synthesized LiFePO4was then mixed with various H4NO3V concentrations and fixed 3 wt.% of carbon pyrolyzed from table sugar and calcined for 2 hours at 400 °C. The result was ball-milled and was then characterized using a thermal analyzer to determine the transition temperature at which sintering temperature of 700 °C for 4 hours was obtained. X-ray diffraction (XRD) was performed to analyze the crystal structure whereas scanning electron microscope (SEM) was used to examine the microstructure and surface morphology. XRD results show that LiFe(1-x)VxPO4/C phase has been formed with an olivine-based structure. SEM results showed an even distribution of LiFe(1-x)VxPO4/C particles. The batteries were prepared from the as-synthesized materials and were tested using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge and discharge (CD) tests. The EIS results showed that carbon improved the conductivity. The performance test showed that the addition of vanadium resulted in a capacity of about 51.06 mAh/g with a potential of 3.581 V at charging and 49.42 mAh/g with a potential of 3.319 V at discharging. These results are promising in terms of using table sugar as a cheap carbon source for lithium ion battery cathode development.


Sign in / Sign up

Export Citation Format

Share Document