Visible-Light Photocatalytic Performance of N/RH/TiO2 Complex Materials

2015 ◽  
Vol 814 ◽  
pp. 590-595
Author(s):  
Qing G. Feng ◽  
Si Y. Qin ◽  
Ting Wang ◽  
Xiao F. Weng ◽  
Bao L. Song ◽  
...  

The TiO2complex samples were produced through sol-gel method, using Ti (OC4H9)4, rice husk (RH) and methenamine as the reactants. Some property analyses were conducted, including X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and photocatalytic experiments in the condition of visible-light. The results showed that the size of crystal was limited with the addition of RH in the complex of N/RH/TiO2samples. The particles of TiO2were dispersed on the surface of rice husk ash, the skeleton of RH after burning. It can inhibit the phenomenon of agglomerate. The ability of both adsorption and photocatalytie activity of complex samples increased as the surface area increased. Doping N into RH/TiO2samples can decrease the forming time, inhibit the transformation of crystal from anatase to rutile to some extent, improve the bond of Ti-O-Si to form and make the absorption spectrum move to the red light part. The complex samples exhibited a certain photocatalytic activity under the visible light region. The reaction rate of visible light photodegradation process arrived 0.0143 min-1, meeting with the first-order reaction kinetics.

2019 ◽  
Vol 233 (5) ◽  
pp. 595-607 ◽  
Author(s):  
Mohsin Siddique ◽  
Noor Muhammad Khan ◽  
Muhammad Saeed

Abstract Nanosized, magnetically separable bismuth ferrite (BFO) nanoparticles, pertaining a crystallite size in the range of 14–15 nm were prepared via facile sol-gel technique. The product was characterized by scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The product was explored for the photocatalytic mineralization of rhodamine B (RB) dye in aqueous medium. The effect of different investigational parameters such as amount of photocatalyst, initial dye concentration and irradiation time on the photocatalytic degradation of RB was studied. The results reveal that the catalyst shows good degrading ability under normal pH and visible light conditions. BFO nanoparticles demonstrated a strong absorption ability in the visible-light region, which lead to efficient photocatalytic degradation of RB dye The reaction system was heterogeneous in nature in which the catalyst can be separated by a normal magnet.


2017 ◽  
Vol 888 ◽  
pp. 435-440 ◽  
Author(s):  
Siti Aida Ibrahim ◽  
Muhamad Nazim Ahmid

TiO2 is one of the most promising photocatalysts that is widely used for environmental clean-up due to its ability to degrade organic pollutants in air or water. The purpose of this study is to enhance the photocatalytic activity of TiO2 by absorbing energy in visible light region in order to degrade pollutants. In this study, the nanostructured Fe-TiO2 was successfully synthesised via a combined method of sol-gel and calcination process. The calcination temperatures used varied from 400 to 800 °C. The as-prepared samples were characterized by X-ray diffraction (XRD), FESEM and UV-Vis spectroscopy (UV-Vis). XRD results show that the phases of TiO2 are dependent on calcination temperature. It is found that both TiO2 and Fe-TiO2 phases were transformed from anatase to rutile as the temperatures were increased. FESEM images revealed that the particle size was agglomerated and the average grain size was about 54 to 66 nm. UV-Vis analysis indicated that the incorporation of Fe and varied calcination temperature may affect the optical properties as the absorption profile was shifted from 445 nm to 585 nm. Thus, this results show that Fe-TiO2 is a highly potential photocatalyst to degrade pollutants under visible light irradiation.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Saheed Olalekan Sanni ◽  
Omoruyi Gold Idemudia

Visible-light-responsive material based on Rhodium doped on titanium dispersed on dealuminated clinoptilolite (TiO2/HCP) was synthesized via a combination of the sol-gel method and photoreductive deposition technique. The photocatalyst surface characterization, structural and optical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and UV-visible spectra (UV-VIS). Doping TiO2/HCP with Rh imparts a red shifting of the absorption band into the visible light region according to UV-VIS. The prepared composite materials were evaluated for their photocatalytic activities on pentachlorophenol (PCP) degradation under sunlight irradiation. The Rhodium doped TiO2/HCP exhibited enhanced photocatalytic activity and can be considered as a potential photocatalyst in wastewater treatment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zubaida Khalil ◽  
Muhammad Akhyar Farrukh

Abstract Fe/CeO2–SiO2 nanocomposite was synthesized by using zwitterionic surfactant 3-(N,N-dimethyloctadecylammonio) propane sulfonate (SB3-18) by sol–gel and hydrothermal methods. The nanocomposite was well characterized before its use. X-ray diffraction (XRD) results confirmed the synthesis of the Fe/CeO2–SiO2 nanocomposite. Crystallite size calculated by using Scherrer equation was 5.33 nm while it was found 5.26 nm by Williamson–Hall equation. Bandgap of Fe/CeO2–SiO2 nanocomposite shows redshift after the doping of Fe. Degradation studies of methylene blue (MB) and chlorpyrifos (CP) were investigated by nanofiltration (NF) column under visible light irradiation. Degradation and adsorption of MB was investigated by three different types of columns under visible light irradiation. It was observed to achieve 100 % removal of MB and 91 % of CP through column in which rice husk ash (RHA) slurry was mixed with the nanocomposite.


2013 ◽  
Vol 634-638 ◽  
pp. 2180-2183 ◽  
Author(s):  
Jun Bo Guo ◽  
Zhang Hua Gan ◽  
Jing Liu ◽  
Zhi Hong Lu

The V-doped TiO2 nanoparticles were successfully prepared by sol-gel method and characterized by X-ray diffraction (XRD), UV-vis spectroscopy and photoluminescence (PL) spectroscopy respectively. It is found that doping V can shift the absorption edge to the visible light region and decrease the recombination of photo-induced electron-hole pairs. Then the photo-absorption and photocatalytic activity were greatly improved. The optimal doping concentration is 0.5% due to synergetic effect of the recombination of electron-hole pairs and adsorption of dyes molecules at the surface of samples.


2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


2011 ◽  
Vol 1292 ◽  
Author(s):  
Dengrong Cai ◽  
Jianmin Li ◽  
Shundong Bu ◽  
Shengwen Yu ◽  
Dengren Jin ◽  
...  

ABSTRACTA facile hydrothermal route assisted by polyethylene glycol (PEG) 400 was utilized to synthesize single-phase Bi2Fe4O9 crystallites. X-ray diffraction results showed the products with PEG 400 of 30 g/L exhibited a preferred growth along the (001) plane. Transmission electron microscopy indicated that the morphology of the as-prepared Bi2Fe4O9 crystallites with PEG 400 were plake-like and rod-like. Strong absorption in visible-light region of the products was characterized by UV-vis diffuse reflectance spectrum (UV-DRS). The photocatalytic activity of Bi2Fe4O9 crystallites was evaluated on degradation of methyl orange (MO) under visible light irradiation. For 3 h irradiation, the degradation ratio was increased to 93% with the aid of a small amount of H2O2. The analysis of FT-IR spectra proved that the Bi2Fe4O9 catalysts were remained stable after the photocalytic reactions.


1996 ◽  
Vol 459 ◽  
Author(s):  
E. Ching-Prado ◽  
W. Pérez ◽  
A. Reynés-Figueroa ◽  
R. S. Katiyar ◽  
D. Ravichandran ◽  
...  

ABSTRACTThin films of SrBi2Nb2O9 (SBN) with thicknesses of 0.1, 0.2, and 0.4 μ were grown by Sol-gel technique on silicon, and annealed at 650°C. The SBN films were investigated by Raman scatering for the first time. Raman spectra in some of the samples present bands around 60, 167, 196, 222, 302, 451, 560, 771, 837, and 863 cm−1, which correspond to the SBN formation. The study indicates that the films are inhomogeneous, and only in samples with thicknesses 0.4 μ the SBN material was found in some places. The prominent Raman band around 870 cm−1, which is the A1g mode of the orthorhombic symmetry, is assigned to the symmetric stretching of the NbO6 octahedrals. The frequency of this band is found to shift in different places in the same sample, as well as from sample to sample. The frequency shifts and the width of the Raman bands are discussed in term of ions in non-equilibrium positions. FT-IR spectra reveal a sharp peak at 1260 cm−1, and two broad bands around 995 and 772 cm−1. The bandwidths of the latter two bands are believed to be associated with the presence of a high degree of defects in the films. The experimental results of the SBN films are compared with those obtained in SBT (T=Ta) films. X-ray diffraction and SEM techniques are also used for the structural characterization.


2014 ◽  
Vol 809-810 ◽  
pp. 890-894
Author(s):  
Dan Li ◽  
Lian Wei Shan ◽  
Gui Lin Wang ◽  
Li Min Dong ◽  
Wei Li ◽  
...  

Boron-BiVO4 samples were synthesized by sol-gel method. They were characterized by UV-vis diffuse reflectance spectroscopy, X-ray diffraction. Photocatalytic activity of the obtained BiVO4 samples was investigated through degrading methylene blue (MB). The results reveal that boron-BiVO4 catalysts have monoclinic scheelite structure. The BiVO4 and Co-BiVO4 photocatalysts were responsive to visible light. Co-BiVO4 photocatalyst showed higher photocatalytic activity than pure BiVO4, resulting in the significantly improved efficiency of degradation of MB.


2016 ◽  
Vol 703 ◽  
pp. 321-325
Author(s):  
Hai Feng Chen ◽  
Jia Mei Chen ◽  
Zhi Xue Pan

In this work, novel Cu/BiVO4 photocatalyst were prepared by a low-temperature solid state grinding method using Bi (NO3)3•5H2O, NH4VO3 and Cu (NO3)2•2H2O as raw materials. The structure and properties of the samples were characterized by Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD) and UV-vis diffused reflectance spectroscopy (DRS); Using the degradation of methyl orange (MO) as the probe, it was simulated as the degradation of sewage under the visible light to study the influence of the illumination time and the amount of photocatalysts. Compared with the pure BiVO4, the visible-light absorption scope of BiVO4 was broadened by doping Cu, the UV-Visible absorption edges were slightly red shift and the band gap was narrower. Comparatively speaking, the results indicted that the doped Cu enhanced the photocatalytic activities of BiVO4.


Sign in / Sign up

Export Citation Format

Share Document