Preparation and Performance of Chiral Polyaniline/Cobalt Ferrite Composites

2016 ◽  
Vol 852 ◽  
pp. 342-345
Author(s):  
Juan Bi Li ◽  
Di Qiong Hu ◽  
Yu Huan Wang ◽  
Liang Chao Li ◽  
Yan Ding

The cobalt ferrite and chiral polyaniline/cobalt ferrite composites were synthesized by co-precipitation and in-situ polymerization method, respectively. The crystal structure and composition, electrical conductivity, optical rotation, dielectric loss and magnetic loss of the as-prepared samples were researched. It was found that the optical rotation (levorotation) of composites is less than that of chiral polyaniline (L-PANI), and increased with the increasing of L-PANI content. The conductivity of the composites with a mass ratio of L-PANI to cobalt ferrite above 0.4 was better than of pure L-PANI, and their dielectric loss was in accordance with the conductivity in variation trend.

2013 ◽  
Vol 834-836 ◽  
pp. 187-190
Author(s):  
Ming Ming Wang ◽  
Zhong Lun Zhang ◽  
Wan Jun Hao ◽  
Guo Yan Hou ◽  
Zhi Jun Xin ◽  
...  

CIP particles first were coated with SiO2 shell by the Stober process , then grafted the polyaniline by in-situ polymerization to prepare CIP/SiO2/PANI core-shell composites. The CIP/SiO2/PANI composites are composed the dielectric loss properties with the the magnetic loss properties, the morphologystructure and electromagnetic properties are characterized by SEMXRD and vector network analyzer, respectively. It is observed that SiO2 and PANI are on the surface of CIP particles, XRD patterns further confirm that the CIP/SiO2/PANI composites are synthesized successfully, and that interaction between components exist in the polymerization. In comparison with CIP, the complex permittivity of CIP/SiO2/PANI composites have certain enhancement in 2-18GHz frequency range, but it has a very small impact on the complex permeability.


2011 ◽  
Vol 295-297 ◽  
pp. 249-255
Author(s):  
Ke Yu Chen ◽  
Meng Xi Sun ◽  
Liang Chao Li ◽  
Feng Xu ◽  
Qiu Shi Xiao

The poly(o-toluidine)/BaFe10Al2O19 (POT/BFA) composites were synthesized by in-situ polymerization of o-toluidine in the presence of BaFe10Al2O19 particles. The structure, composition and morphology and electromagnetic property of the obtained samples were characterized by means of modern testing techniques. The results indicated that BFA particles were coated effectively by POT polymer chain and some interactions between POT and BFA particles were existed in the composites. The conductivity and saturation magnetization of POT/BFA composites were smaller than those of pure polymers and pure BFA respectively. The POT/BFA composites had excellent magnetic loss (μ′′) and dielectric loss (ε′′) in the range of 1 MHz~3 GHz because of their intrinsic properties and synergistic effect between components. Hence, they could be recommended as candidates for electromagnetic wave absorption and shielding materials.


2014 ◽  
Vol 1015 ◽  
pp. 381-384
Author(s):  
Li Liu ◽  
Li Hai Cai ◽  
Dan Liu ◽  
Jun Xu ◽  
Bao Hua Guo

The poly (butylene succinate) (PBS) and 3 wt% attapulgite (ATP) reinforced PBS/ATP nanocomposites with 1,6-hexanediol were fabricated using an in situ polymerization method. The crystallization behaviors indicated that ATP had effectively acted as nucleating agent, resulting in the enhancement on the crystallization temperature. The SEM results showed a superior interfacial linkage between ATP and PBS. Also, ATP could disperse as a single fiber and embed in the polymer matrix, which resulted in the improved mechanical properties.


2019 ◽  
Vol 361 ◽  
pp. 897-907 ◽  
Author(s):  
Jingchun Lv ◽  
Peiwen Zhou ◽  
Linping Zhang ◽  
Yi Zhong ◽  
Xiaofeng Sui ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 985 ◽  
Author(s):  
Yidong Liu ◽  
Lingfeng Jian ◽  
Tianhua Xiao ◽  
Rongtao Liu ◽  
Shun Yi ◽  
...  

CO2 has been regarded as one of the most promising blowing agents for polystyrene (PS) foam due to its non-flammability, low price, nontoxicity, and eco-friendliness. However, the low solubility and fast diffusivity of CO2 in PS hinder its potential applications. In this study, an attapulgite (ATP)/polypyrrole (PPy) nanocomposite was developed using the in situ polymerization method to generate the hierarchical cell texture for the PS foam based on the supercritical CO2 foaming. The results demonstrated that the nanocomposite could act as an efficient CO2 capturer enabling the random release of it during the foaming process. In contrast to the pure PS foam, the ATP/PPy nanocomposite reinforced PS foam is endowed with high cell density (up to 1.9 × 106) and similar thermal conductivity as the neat PS foam, as well as high compression modulus. Therefore, the in situ polymerized ATP/PPy nanocomposite makes supercritical CO2 foaming desired candidate to replace the widely used fluorocarbons and chlorofluorocarbons as PS blowing agents.


2014 ◽  
Vol 989-994 ◽  
pp. 164-167
Author(s):  
Rui Feng

An in-situ polymerization method was used for the preparation of a novel stir bar based on neodymium magnet (Nd2Fe14B) powders. The processes were carried out by several steps including the enwrapping of Nd2Fe14B, the modification of the enclosed Nd2Fe14B, and the form of organic polymers on the surface of the modified powders. It was successfully used to enrich the plasticizers in water sample by stir bar sorptive extraction (SBSE). The experimental conditions for SBSE, such as the choice of extraction sorvents, salt concentration, extraction and desorption time were optimized in detail. Coupled to high performance liquid chromatography (HPLC), the recoveries of dibutyl phthalate (DBP), dimethyl phthalate (DMP), diethyl phthalate (DEP) were 89.2%~92.1%, 91.9%~96.6% and 94.3%~96.7%, respectively; the linear relationships between the concentration 5 μg/L and 800 μg/L for DBP were obtained; the limits of detection ranged from 0.09 μg/L to 0.21 μg/L in the optimal conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Di Zhang ◽  
Huaiyin Chen ◽  
Ruoyu Hong

In this paper, the magnetite/polyaniline (PANI) nanocomposite was prepared by the novel reverse in situ polymerization method. Fe3O4 magnetic nanoparticles were synthesized in situ in PANI chloroform solution to form a suspension containing the Fe3O4/PANI nanocomposite. It overcame the disadvantage of oxidation of the Fe3O4 by the oxidant in conventional method. The Fe3O4/PANI chloroform suspension and the Fe3O4/PANI powder were characterized by FT-IR, TEM, XRD, vibrating sample magnetometer, Gouy magnetic balance, conductivity meter, and vector network analyzer. It is demonstrated that the Fe3O4/PANI suspension has a good electrical conductivity that is up to 2.135 μS/cm at the optimal ratio of reactants. The Fe3O4 nanoparticles are well dispersed in the PANI network with a particle size of about 10 nm. Fe3O4/PANI powder has high saturation magnetization and magnetic susceptibility, as well as a broad application prospect in the field of electromagnetic devices. The Fe3O4/PANI powder exhibits an excellent microwave absorption behavior, which can be an outstanding candidate for the rapid development of broadband shielding materials.


Sign in / Sign up

Export Citation Format

Share Document