New Method for Determining the Electron Streams in the Metals from the Measured Flows of Scattered Primary Radiation

2016 ◽  
Vol 870 ◽  
pp. 735-740
Author(s):  
P.M. Kosianov

The paper examines the results of theoretical and experimental studies of different interaction of ionizing emission photons with substances, in particular, the photo effect and the Compton scattering of these photons. The paper substantiates a new method of determining the recoil electrons number - the photoelectrons number ratio. The results of certain measurements are presented. The analysis of the results showed that there are noticeable divergences between the theoretical calculations and the experimental data.

2021 ◽  
Vol 34 (04) ◽  
pp. 1413-1419
Author(s):  
Petr M. Kosianov

The problem in question is relevant due to discrepancy between the results of theoretical and known experimental studies of various interactions of ionizing emission photons with substances, in particular, photo effect and Compton scattering of these photons. The study aimed at carrying out specific measurements using a new method of simultaneously determining the ratio of the number of recoil electrons to the number of photoelectrons. Analysis of the results showed that there are significant discrepancies between theoretical calculations and experimental data. New values of simultaneously measured ratios of cross-sections for heavy atoms using a method invented by the author, and old measurements of these ratios for light atoms usingWilson cloud chamber, when compared with theoretical calculations, show that a significant (by one order and more) one-direction discrepancy is seen for X-ray and gamma emissions over a range of energies in question.It is shown that these discrepancies might be attributed to the fact that an atomic electron is in a free state for a while. Compton scattering occurs with a free electron; photo effect involves only bound electrons. Therefore, Compton scattering cross section is proportional to a period of time, during which electron was in a free state, whereas photo effect cross section is proportional to a time period, during which electron was in a bound state. The article materials might be helpful to perform both fundamental, and applied studies on interaction of light quanta with substance including modelling the phenomena under examination.


2007 ◽  
Vol 25 (3) ◽  
pp. 415-423 ◽  
Author(s):  
N.Yu. Orlov ◽  
S.Yu. Gus'kov ◽  
S.A. Pikuz ◽  
V.B. Rozanov ◽  
T.A. Shelkovenko ◽  
...  

Theoretical and experimental studies of radiative properties of hot dense plasmas that are used as soft X-ray sources have been carried out depending on the plasma composition. Important features of the theoretical model, which can be used for complex materials, are discussed. An optimizing procedure that can determine an effective complex material to produce optically thick plasma by laser interaction with a thick solid target is applied. The efficiency of the resulting material is compared with the efficiency of other composite materials that have previously been evaluated theoretically. It is shown that the optimizing procedure does, in practice, find higher radiation efficiency materials than have been found by previous authors. Similar theoretical research is performed for the optically thin plasma produced from exploding wires. Theoretical estimations of radiative efficiency are compared with experimental data that are obtained from measurements of X-pinch radiation energy yield using two exploding wire materials, NiCr and Alloy 188. It is shown that theoretical calculations agree well with the experimental data.


2018 ◽  
Vol 8 (4) ◽  
pp. 4-9
Author(s):  
Gennady V. MURASHKIN ◽  
Antonina I. SNEGIREVA ◽  
Dmitry A. KRETOV ◽  
Yury V. ZHILTSOV

In this paper experimental studies of ring-shaped reinforced concrete matrices for explosive stamping on deformation indexes under the eff ect of impulse loads are viewed. The study was carried out on sample, which was subjected to explosive loading. The results of calibration tests using the “Dynamics- 1” strain gauge complex are presented. The dependence of the tension in the matrix on the reaction of the strain gauge system is obtained. The obtained experimental data are compared with theoretical calculations. The general results of the studies obtained are given taking into account their further use for serial testing of matrices in order to determine their durability.


1994 ◽  
Vol 38 ◽  
pp. 665-671
Author(s):  
V. I. Smolniakov

Abstract On the basis of experimental data and theoretical calculations, the contributions of scattering to the intensities of the K-lines of the lanthanides are considered. This effect studied for the “one-element plus buffer” targets of medium thickness when these targets were excited by gam ma-radiation with energy 59.54 keV of radioisotope 241Am or 88.009 keV of radioisotope 109Cd. The experimental dependencies were improved by theoretical corrections calculated by the formula for a medium thickness target. This formula takes into account the contributions to the measured intensities which arc caused by the subexcitation of fluorescent atoms by primary radiation scattered in the sample. Good approximation of the experimental data by the theoretical calculations was obtained. It was found that contributions to the measured intensities of a lanthanide's atom fluorescence, which can be as much as a few percents, can lead to the subexcitation by scattering radiation of the targets with low concentrations of the fluorescent elements.


2017 ◽  
Author(s):  
Haibo Ge ◽  
Lei Pan ◽  
Piaoping Tang ◽  
Ke Yang ◽  
Mian Wang ◽  
...  

Transition metal-catalyzed selective C–H bond functionalization enabled by transient ligands has become an extremely attractive topic due to its economical and greener characteristics. However, catalytic pathways of this reaction process on unactivated sp<sup>3</sup> carbons of reactants have not been well studied yet. Herein, detailed mechanistic investigation on Pd-catalyzed C(sp<sup>3</sup>)–H bond activation with amino acids as transient ligands has been systematically conducted. The theoretical calculations showed that higher angle distortion of C(sp2)-H bond over C(sp3)-H bond and stronger nucleophilicity of benzylic anion over its aromatic counterpart, leading to higher reactivity of corresponding C(sp<sup>3</sup>)–H bonds; the angle strain of the directing rings of key intermediates determines the site-selectivity of aliphatic ketone substrates; replacement of glycine with β-alanine as the transient ligand can decrease the angle tension of the directing rings. Synthetic experiments have confirmed that β-alanine is indeed a more efficient transient ligand for arylation of β-secondary carbons of linear aliphatic ketones than its glycine counterpart.<br><br>


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


2019 ◽  
Vol 108 (1) ◽  
pp. 11-17
Author(s):  
Mert Şekerci ◽  
Hasan Özdoğan ◽  
Abdullah Kaplan

Abstract One of the methods used to treat different cancer diseases is the employment of therapeutic radioisotopes. Therefore, many clinical, theoretical and experimental studies are being carried out on those radioisotopes. In this study, the effects of level density models and gamma ray strength functions on the theoretical production cross-section calculations for the therapeutic radioisotopes 90Y, 153Sm, 169Er, 177Lu and 186Re in the (n,γ) route have been investigated. TALYS 1.9 code has been used by employing different level density models and gamma ray strength functions. The theoretically obtained data were compared with the experimental data taken from the literature. The results are presented graphically for better interpretation.


1981 ◽  
Vol 21 (06) ◽  
pp. 747-762 ◽  
Author(s):  
Karl E. Bennett ◽  
Craig H.K. Phelps ◽  
H. Ted Davis ◽  
L.E. Scriven

Abstract The phase behavior of microemulsions of brine, hydrocarbon, alcohol, and a pure alkyl aryl sulfonate-sodium 4-(1-heptylnonyl) benzenesulfonate (SHBS or Texas 1) was investigated as a function of the concentration of salt (NaCl, MgCl2, or CaCl2), the hydrocarbon (n-alkanes, octane to hexadecane), the alcohol (butyl and amyl isomers), the concentration of surfactant, and temperature. The phase behavior mimics that of similar systems with the commercial surfactant Witco TRS 10–80. The phase volumes follow published trends, though with exceptions.A mathematical framework is presented for modeling phase behavior in a manner consistent with the thermodynamically required critical tie lines and plait point progressions from the critical endpoints. Hand's scheme for modeling binodals and Pope and Nelson's approach to modeling the evolution of the surfactant-rich third phase are extended to satisfy these requirements.An examination of model-generated progressions of ternary phase diagrams enhances understanding of the experimental data and reveals correlations of relative phase volumes (volume uptakes) with location of the mixing point (overall composition) relative to the height of the three-phase region and the locations of the critical tie lines (critical endpoints and conjugate phases). The correlations account, on thermodynamic grounds, for cases in which the surfactant is present in more than one phase or the phase volumes change discontinuously, both cases being observed in the experimental study. Introduction The phase behavior of a surfactant-based micellar formulation is one of the major factors governing the displacement efficiency of any chemical flooding process employing that formulation. Knowledge of phase behavior is, thus, important for the interpretation of laboratory core floods, the design of flooding processes, and the evaluation of field tests. Phase behavior is connected intimately with other determinants of the flooding process, such as interfacial tension and viscosity. Since the number of equilibrium phases and their volumes and appearances are easier to measure and observe than phase compositions, viscosities, and interfacial tensions, there is great interest in understanding the phase-volume/phase-property relationships. Commercial surfactants, such as Witco TRS 10-80, are sulfonates of crude or partially refined oil. While they seem to be the most economically practicable surfactants for micellar flooding, their behavior, particularly with crude oils and reservoir brines, can be difficult to interpret, the phases varying with time and from batch to batch. Phase behavior studies with a small number of components, in conjunction with a theoretical understanding of phase behavior progressions, can aid in understanding more complex behavior. In particular, one can begin to appreciate which seemingly abnormal experimental observations (e.g., surfactant present in more than one phase or a discontinuity in phase volume trends) are merely features of certain regions of any phase diagram and which are peculiar to the specific crude oil or commercial surfactant used in the study.We report here experimental studies of the phase behavior of microemulsions of a pure sulfonate surfactant (Texas 1), a single normal alkane hydrocarbon, a simple brine, and a small amount of a suitable alcohol as cosurfactant or cosolvent. The controlled variables are hydrocarbon chain length, alcohol, salinity, salt type (NaCl, MgCl2, or CaCl2), surfactant purity, surfactant concentration, and temperature. Many of these experimental data were presented earlier. SPEJ P. 747^


2016 ◽  
Vol 104 (8) ◽  
Author(s):  
Junhua Luo ◽  
Chunlei Wu ◽  
Li Jiang ◽  
Long He

Abstract:The cross sections for (n,x) reactions on samarium isotopes were measured at (d-T) neutron energies of 13.5 and 14.8 MeV with the activation technique. Samples were activated along with Nb and Al monitor foils to determine the incident neutron flux. Theoretical calculations of excitation functions were performed using the nuclear model codes TALYS-1.6 and EMPIRE-3.2 Malta with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. The results were discussed and compared with experimental data found in the literature. At neutron energies 13.5 and 14.8 MeV, the cross sections of the


Sign in / Sign up

Export Citation Format

Share Document