Thermo-Mechanical and Low Cycle Fatigue Failure Behavior Relevant to Temperature Regime in a TBCed Superalloy Specimen

2016 ◽  
Vol 879 ◽  
pp. 2518-2523
Author(s):  
Masakazu Okazaki ◽  
Satoshi Yamagishi ◽  
Yuuki Yonaguni

Steady state and non-steady state thermo-mechanical fatigue failure is great concern in this work. At first steady state thermo-mechanical fatigue failure behavior was investigated using the round-bar TBC specimens, after getting basic data of mechanical properties of the bond/top coats and the substrate alloy. The failure behavior was compared with that during isothermal low cycle fatigue (LCF). Next non-steady state TMF tests were carried out in which non-steady state thermal stress was significant in the TBC specimen, compared with the properties under the steady state TMF. The experimental work clearly demonstrated that the TMF failure lives were significantly changed depending on the temperature regime during TMF and LCF. Of particular importance was found in the non-steady state TMF tests. The non-steady state TMF cycling promoted the delamination of ceramic top coat, resulting in a significant reduction in fatigue life.

2021 ◽  
Vol 132 ◽  
pp. 107115
Author(s):  
Duqiang Ren ◽  
Yun Jiang ◽  
Xiaoan Hu ◽  
Xianzheng Zhang ◽  
Xiaoping Xiang ◽  
...  

2010 ◽  
Vol 638-642 ◽  
pp. 455-460 ◽  
Author(s):  
A. Rutecka ◽  
L. Dietrich ◽  
Zbigniew L. Kowalewski

The AlSi8Cu3 and AlSi7MgCu0.5 cast aluminium alloys of different composition and heat treatment were investigated to verify their applicability as cylinder heads in the car engines [1]. Creep tests under the step-increased stresses at different temperatures, and low cycle fatigue (LCF) tests for a range of strain amplitudes and temperatures were carried out. The results exhibit a significant influence of the heat treatment on the mechanical properties of the AlSi8Cu3 and AlSi7MgCu0.5. An interesting fact is that the properties strongly depend on the type of quenching. Lower creep resistance (higher strain rates) and lower stress response during fatigue tests were observed for the air quenched materials in comparison to those in the water quenched. Cyclic hardening/softening were also observed during the LCF tests due to the heat treatment applied. The mechanical properties determined during the tests can be used to identify new constitutive equations and to verify existing numerical models.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1917 ◽  
Author(s):  
Mu-Hang Zhang ◽  
Xiao-Hong Shen ◽  
Lei He ◽  
Ke-Shi Zhang

The relation between deformation inhomogeneity and low-cycle-fatigue failure of T2 pure copper and the nickel-based superalloy GH4169 under symmetric tension-compression cyclic strain loading is investigated by using a polycrystal representative volume element (RVE) as the material model. The anisotropic behavior of grains and the strain fields are calculated by crystal plasticity, taking the Bauschinger effect into account to track the process of strain cycles of metals, and the Shannon’s differential entropies of both distributions of the strain in the loading direction and the first principal strain are employed at the tension peak of the cycles as measuring parameters of strain inhomogeneity. Both parameters are found to increase in value with increments in the number of cycles and they have critical values for predicting the material’s fatigue failure. Compared to the fatigue test data, it is verified that both parameters measured by Shannon’s differential entropies can be used as fatigue indicating parameters (FIPs) to predict the low cycle fatigue life of metal.


Sign in / Sign up

Export Citation Format

Share Document