Synthesis and Characterization of MgO/MCM-22 as Catalytic Support Using the Impregnation Technique

2016 ◽  
Vol 881 ◽  
pp. 41-45
Author(s):  
Caroline Vasconcelos Fernandes ◽  
Vitória de Andrade Freire ◽  
Bianca Viana de Sousa

MCM-22 is a microporous molecular sieve with a system of sinusoidal three-dimensional channels that do not interconnect themselves, which presents good adsorption capacity and high acidity. Thus, this study aims to evaluate the chemical and structural properties of the catalyst MgO/MCM-22 using wet impregnation method. The synthesis of the zeolite was performed using the static hydrothermal method. Through the XRD patterns, it was possible to observe that the metal incorporation process did not cause structural changes, as well as the analysis showed small peaks related to the magnesium oxide in the structure. The micrographs presented a spherical morphology with depression in the central region. FTIR spectra showed the typical peaks of metal with little differences in the typical peaks of MCM-22.

2016 ◽  
Vol 707 ◽  
pp. 166-174 ◽  
Author(s):  
Yun Hin Taufiq-Yap ◽  
Davin Kin Yew Yap

Empty fruit bunch (EFB) waste is produced in large amount in Malaysia from intense oil palm agriculture activity. Direct usage of EFB as a source of energy is not economically feasible and ideally should be upgraded before it can produce green energy economically. Current gasification processes produces a lot of tar while yielding low amount of hydrogen. Flash gasification of EFB with the presence of catalysts shows improvements over the uncatalysed reaction. In this study, by using a high surface area support catalyst of ZSM-5 with the presence of 1% Ni, Zn, or Fe metal loading is sufficient to enhance the hydrogen production. ZSM-5, NiO/ZSM-5, CuO/ZSM-5, Fe2O3/ZSM-5 and ZnO/ZSM-5 catalyst with 1 wt % loading were prepared via the wet impregnation method. XRD patterns of the prepared catalysts shows almost identical peaks patterns which indicates high dispersion of dopants on the support catalyst Flash gasification was carried out at 900°C under isothermal heating conditions with 10 sccm 4.99% O2 diluted in He. Syngas produced was then analysed using an online quadrupole mass spectrometer. Catalytic activity for hydrogen production is the highest for NiO/ZSM-5 followed by ZnO/ZSM-5, Fe2O3/ZSM-5, ZSM-5.


2019 ◽  
Vol 814 ◽  
pp. 457-462
Author(s):  
Hong Xin You ◽  
Lian Peng ◽  
Qiang Wang

Ni0.75Fe0.25Ox-GDC cermet anode for intermediate temperature solid oxide fuel cell was prepared by hard template method and wet impregnation method. LSC-GDC cathode-supported single cell was fabricated by using Ni0.75Fe0.25 coated tubular GDC as anode for the performance test. The composite anode material with Ni-Fe alloy particles coated tubular GDC was analyzed by XRD and SEM. The maximum power density of the single cell in hydrogen and dry methane was 736 and 400 mW·cm-2 at 800 °C, respectively. The SEM observation showed that the anode had a porous three-dimensional microstructure with high specific surface and rich gas channel, resulting a high power generation performance.


2020 ◽  
Vol 861 ◽  
pp. 365-370
Author(s):  
Sasikarn Nuchdang ◽  
Wilasinee Kingkam ◽  
Orapun Leelanupat ◽  
Dussadee Rattanaphra

This research aims to study the preparation and characterization of La2O3 supported coal fly ash catalyst. Studied La2O3 and coal fly ash (CFA) were obtained from Thai monazite ore processing and local supplier, respectively. The catalyst was prepared by wet impregnation method. The influences of La2O3 loading and impregnation temperature on the chemical composition, crystalline phase and surface morphology of the catalyst were examined by varying the amount of La2O3 (5, 10 and 20 wt%) and the impregnation temperature (room temperature, 100, 150 and 200 °C). Characterizations such as WDXRF, XRD and SEM were carried out. The XRD results demonstrated that the La2O3 was highly dispersed on the CFA support. A high La2O3 loading resulted in an increase free CaO dissolvation during the impregnation which inhibited the interaction between SiO2 and La2O3. The impregnation temperature had no significant effect on the chemical and physical properties of the catalyst. The coexist of Fe3O4 in the CFA support might impact to hinder the incorporation of La2O3 into SiO2 matrix.


2014 ◽  
Vol 699 ◽  
pp. 163-168
Author(s):  
Nazri Murat Muhamad ◽  
Azman Miskam Muhamad ◽  
Ahmad Mohd Azmier ◽  
Zainal Alimuddin Zainal Alauddin ◽  
Zulfikar Ishak Mohammad

The wet impregnation method for catalytic microcombustor was characterized by using platinum as a catalyst. The main purpose of this study is to increase the surface porosity of the catalyst support. A high surface porosity indicates that a high amount of catalyst was deposited within the surface areas. The performance of the catalytic microcombustor improves with increasing catalytic surface area. The stainless steel catalyst support was treated with sulfuric acid solution containing polyvinyl (3.89 wt%) and propargyl alcohol (1.48 wt%). Combustion test was performed using LPG-air to test the performance of the catalyst. The surface support treated with polyvinyl (PVA) showed a higher surface porosity and combustion blow-out limit compared with propargyl alcohol. The combustion mode changes from surface to submerged combustion after the catalyst was deposited in the support surface.


Author(s):  
Muhamad Nazri Murat ◽  
Muhamad Azman Miskam ◽  
Zainal Alimuddin Zainal Alauddin ◽  
Nor Irwin Basir ◽  
Mohammad Zulfikar Ishak

2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


Cerâmica ◽  
2018 ◽  
Vol 64 (371) ◽  
pp. 436-442 ◽  
Author(s):  
E. O. Moraes Júnior ◽  
J. O. Leite ◽  
A. G. Santos ◽  
M. J. B. Souza ◽  
A. M. Garrido Pedrosa

Abstract La1-xSrxNiO3 (x= 0.0, 0.3 or 0.7) perovskite-type oxides were synthesized using the modified proteic gel method and using collagen as an organic precursor. Catalysts of La1-xSrxNiO3/Al2O3 were obtained using the wet impregnation method. The synthesized catalysts were characterized by X-ray diffraction, surface area and temperature-programmed reduction. The catalysts were evaluated in the partial oxidation reaction of methane, and the levels of selectivity to CO, CO2, H2 and H2O were determined. Among the catalysts studied, the catalyst LaNiO3/Al2O3 had the highest methane conversion level (78%) and higher H2 selectivity (55%).


2021 ◽  
Author(s):  
Nawel Jr ◽  
Thabet Makhlouf ◽  
Gerard Delahay ◽  
Hassib Tounsi

Abstract Copper loaded η-alumina catalysts with different copper contents have been prepared by impregnation/evaporation method. The catalysts were characterized by XRD, FTIR, BET, UV–vis, H2-TPR and evaluated in the selective catalytic reduction of NO by NH3 and in the selective catalytic oxidation of NH3. The characterization techniques showed that the impregnation/evaporation method permits to obtain highly dispersed copper oxide species on the η-alumina surface when low amount of copper is used (1wt. % and 2 wt.%). The wet impregnation method made it possible to reach a well dispersion of the copper species on the surface of the alumina for the low copper contents Cu(1)-Al2O3 and Cu(2)-Al2O3. The latter justifies the similar behavior of Cu(1)-Al2O3) and Cu(2)-Al2O3 in the selective catalytic oxidation of NH3 where these catalysts exhibit a conversion of NH3 to N2 of the order of 100% at T > 500°C.


2007 ◽  
Vol 119 ◽  
pp. 231-234
Author(s):  
Yong Hwan Kim ◽  
Yon Ki Seo ◽  
Young Rae Cho ◽  
Kwang Ho Kim ◽  
Won Sub Chung

The Platinum catalysts on the carbon nanotubes(CNTs) supports of various diameters were prepared by wet impregnation method using H2PtCl6 precursor. The samples using 100nm, 15~20nm, 10~15nm and 5~10nm diameters of CNTs and carbon nanofibers(CNFs) are named Pt/t- CNFs, Pt/MWNTs20, Pt/MWNTs10 and Pt/MWNTs5, respectively. The effects of CNTs diameter on the Pt particle size and distribution were investigated by the means of powder XRD and TEM observation. In addition, the electro-catalytic characteristics for methanol electro-oxidation were estimated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The average size of Pt particles increases as follows; Pt/MWNTs10 < Pt/MWNTs5 < Pt/MWNTs20 < Pt/t-CNFs. The electro-catalytic characteristics of Pt/MWNTs10 and Pt/MWNTs20 are found to be superior in comparison with the others. For preparation of the most effective supported Pt catalyst, the optimum diameter of CNTs support in the range of 10-20nm, is needed.


Sign in / Sign up

Export Citation Format

Share Document