Characterization of Wet Impregnation Method for Catalytic Microcombustor by Using Platinum

2014 ◽  
Vol 699 ◽  
pp. 163-168
Author(s):  
Nazri Murat Muhamad ◽  
Azman Miskam Muhamad ◽  
Ahmad Mohd Azmier ◽  
Zainal Alimuddin Zainal Alauddin ◽  
Zulfikar Ishak Mohammad

The wet impregnation method for catalytic microcombustor was characterized by using platinum as a catalyst. The main purpose of this study is to increase the surface porosity of the catalyst support. A high surface porosity indicates that a high amount of catalyst was deposited within the surface areas. The performance of the catalytic microcombustor improves with increasing catalytic surface area. The stainless steel catalyst support was treated with sulfuric acid solution containing polyvinyl (3.89 wt%) and propargyl alcohol (1.48 wt%). Combustion test was performed using LPG-air to test the performance of the catalyst. The surface support treated with polyvinyl (PVA) showed a higher surface porosity and combustion blow-out limit compared with propargyl alcohol. The combustion mode changes from surface to submerged combustion after the catalyst was deposited in the support surface.

2016 ◽  
Vol 881 ◽  
pp. 41-45
Author(s):  
Caroline Vasconcelos Fernandes ◽  
Vitória de Andrade Freire ◽  
Bianca Viana de Sousa

MCM-22 is a microporous molecular sieve with a system of sinusoidal three-dimensional channels that do not interconnect themselves, which presents good adsorption capacity and high acidity. Thus, this study aims to evaluate the chemical and structural properties of the catalyst MgO/MCM-22 using wet impregnation method. The synthesis of the zeolite was performed using the static hydrothermal method. Through the XRD patterns, it was possible to observe that the metal incorporation process did not cause structural changes, as well as the analysis showed small peaks related to the magnesium oxide in the structure. The micrographs presented a spherical morphology with depression in the central region. FTIR spectra showed the typical peaks of metal with little differences in the typical peaks of MCM-22.


2016 ◽  
Vol 707 ◽  
pp. 166-174 ◽  
Author(s):  
Yun Hin Taufiq-Yap ◽  
Davin Kin Yew Yap

Empty fruit bunch (EFB) waste is produced in large amount in Malaysia from intense oil palm agriculture activity. Direct usage of EFB as a source of energy is not economically feasible and ideally should be upgraded before it can produce green energy economically. Current gasification processes produces a lot of tar while yielding low amount of hydrogen. Flash gasification of EFB with the presence of catalysts shows improvements over the uncatalysed reaction. In this study, by using a high surface area support catalyst of ZSM-5 with the presence of 1% Ni, Zn, or Fe metal loading is sufficient to enhance the hydrogen production. ZSM-5, NiO/ZSM-5, CuO/ZSM-5, Fe2O3/ZSM-5 and ZnO/ZSM-5 catalyst with 1 wt % loading were prepared via the wet impregnation method. XRD patterns of the prepared catalysts shows almost identical peaks patterns which indicates high dispersion of dopants on the support catalyst Flash gasification was carried out at 900°C under isothermal heating conditions with 10 sccm 4.99% O2 diluted in He. Syngas produced was then analysed using an online quadrupole mass spectrometer. Catalytic activity for hydrogen production is the highest for NiO/ZSM-5 followed by ZnO/ZSM-5, Fe2O3/ZSM-5, ZSM-5.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3448
Author(s):  
Adrián García ◽  
Rut Sanchis ◽  
Francisco J. Llopis ◽  
Isabel Vázquez ◽  
María Pilar Pico ◽  
...  

γ-Valerolactone (GVL) is a valuable chemical that can be used as a clean additive for automotive fuels. This compound can be produced from biomass-derived compounds. Levulinic acid (LA) is a compound that can be obtained easily from biomass and it can be transformed into GVL by dehydration and hydrogenation using metallic catalysts. In this work, catalysts of Ni (a non-noble metal) supported on a series of natural and low-cost clay-materials have been tested in the transformation of LA into GVL. Catalysts were prepared by a modified wet impregnation method using oxalic acid trying to facilitate a suitable metal dispersion. The supports employed are attapulgite and two sepiolites with different surface areas. Reaction tests have been undertaken using an aqueous medium at moderate reaction temperatures of 120 and 180 °C. Three types of experiments were undertaken: (i) without H2 source, (ii) using formic acid (FA) as hydrogen source and (iii) using Zn in order to transform water in hydrogen through the reaction Zn + H2O → ZnO + H2. The best results have been obtained combining Zn (which plays a double role as a reactant for hydrogen formation and as a catalyst) and Ni/attapulgite. Yields to GVL higher than 98% have been obtained at 180 °C in the best cases. The best catalytic performance has been related to the presence of tiny Ni particles as nickel crystallites larger than 4 nm were not present in the most efficient catalysts.


2020 ◽  
Vol 861 ◽  
pp. 365-370
Author(s):  
Sasikarn Nuchdang ◽  
Wilasinee Kingkam ◽  
Orapun Leelanupat ◽  
Dussadee Rattanaphra

This research aims to study the preparation and characterization of La2O3 supported coal fly ash catalyst. Studied La2O3 and coal fly ash (CFA) were obtained from Thai monazite ore processing and local supplier, respectively. The catalyst was prepared by wet impregnation method. The influences of La2O3 loading and impregnation temperature on the chemical composition, crystalline phase and surface morphology of the catalyst were examined by varying the amount of La2O3 (5, 10 and 20 wt%) and the impregnation temperature (room temperature, 100, 150 and 200 °C). Characterizations such as WDXRF, XRD and SEM were carried out. The XRD results demonstrated that the La2O3 was highly dispersed on the CFA support. A high La2O3 loading resulted in an increase free CaO dissolvation during the impregnation which inhibited the interaction between SiO2 and La2O3. The impregnation temperature had no significant effect on the chemical and physical properties of the catalyst. The coexist of Fe3O4 in the CFA support might impact to hinder the incorporation of La2O3 into SiO2 matrix.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1777 ◽  
Author(s):  
Anis Hamza Fakeeha ◽  
Samsudeen Olajide Kasim ◽  
Ahmed Aidid Ibrahim ◽  
Ahmed Elhag Abasaeed ◽  
Ahmed Sadeq Al-Fatesh

A promising method to reduce global warming has been methane reforming with CO2, as it combines two greenhouse gases to obtain useful products. In this study, Ni-supported catalysts were synthesized using the wet impregnation method to obtain 5%Ni/Al2O3(SA-5239), 5%Ni/Al2O3(SA-6175), 5%Ni/SiO2, 5%Ni/MCM41, and 5%Ni/SBA15. The catalysts were tested in dry reforming of methane at 700 °C, 1 atm, and a space velocity of 39,000 mL/gcat h, to study the interaction of Ni with the supports, and evaluation was based on CH4 and CO2 conversions. 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 gave the highest conversion of CH4 (78 and 75%, respectively) and CO2 (84 and 82%, respectively). The catalysts were characterized by some techniques. Ni phases were identified by X-ray diffraction patterns. Brunauer–Emmett–Teller analysis showed different surface areas of the catalysts with the least being 4 m2/g and the highest 668 m2/g belonging to 5%Ni/Al2O3(SA-5239) and 5%Ni/SBA15, respectively. The reduction profiles revealed weak NiO-supports interaction for 5%Ni/Al2O3(SA-5239), 5%Ni/MCM41, and 5%Ni/SBA15; while strong interaction was observed in 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2. The 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 were close with respect to performance; however, the former had a higher amount of carbon deposit, which is mostly graphitic, according to the conducted thermal analysis. Carbon deposits on 5%Ni/SiO2 were mainly atomic in nature.


Author(s):  
Muhamad Nazri Murat ◽  
Muhamad Azman Miskam ◽  
Zainal Alimuddin Zainal Alauddin ◽  
Nor Irwin Basir ◽  
Mohammad Zulfikar Ishak

2016 ◽  
Vol 701 ◽  
pp. 67-72 ◽  
Author(s):  
Mariam Ameen ◽  
Mohammad Tazli Azizan ◽  
Suzana Yusup ◽  
Anita Ramli ◽  
Madiha Yasir ◽  
...  

The studies based on morphological characterization to assess the effects of ultrasound irradiation on synthesis of solid acid catalysts. Three sets of catalyst formulation were synthesized by both wet impregnation method and ultrasound assisted methods with different wt. % of Ni loading on γ-Al2O3. The XRD, BET, TEM and FESEM techniques were used to characterize the nano-particles. Physicochemical characterization revealed that the synthesized catalysts particles using ultrasound irradiation were in nano size range (1-24.5 nm) with equal dispersion of metal oxide, high surface area with increase of metal loading and high phase purity than the catalysts synthesized conventional method. These catalysts were also found in various crystal structures like cubic, monoclinic and tetrahedral. The use of ultrasound irradiation has great significance over the wet impregnation method in relation to the rate of synthesis of nanocatalysts. The high surface area, high thermal stability and small particle size (up to 1 nm) are the basic elements for high activity of solid acid catalysts in hydrocracking and hydrodeoxygenation of various feedstock in petroleum industries.


2003 ◽  
Vol 21 (5) ◽  
pp. 425-438 ◽  
Author(s):  
M. Mokhtar

A CuO/Al2O3 solid containing 0.2 mol% CuO (0.2CuO/Al2O3) and three MoO3-doped variants of this material were all prepared via the wet impregnation method, the amount of dopant added to the CuO/Al2O3 solid being 0.25, 1.0 or 2.0 mol% MoO3, respectively. All the samples prepared were heated in air to 350, 450 or 600°C, respectively, before being cooled to room temperature and stored. X-Ray studies of these materials showed that the undoped (pure) solid calcined at 350°C exhibited all the diffractions lines associated with the AlO(OH) and CuO phases with an excellent degree of crystallinity. Doping the pure solid resulted in the effective progressive decrease in the degree of crystallinity of both the above-mentioned phases to an extent proportional to the amount of dopant added. Increasing the calcination temperature of the pure and doped solids to 650°C led to a significant decrease in the degree of ordering of CuO due to the formation of poorly crystalline γ-Al2O3 having a much better dispersion power relative to AlO(OH). The specific surface areas of the various samples were found to decrease progressively as the amount of dopant added was increased, especially for samples calcined at 650°C. Increasing the calcination temperature of the pure sample within the range 350–650°C led to a small increase in their catalytic activities in H2O2 decomposition. In contrast, MoO3 treatment followed by calcination of the resulting materials in the range 350–650°C resulted in a significant increase in their catalytic activities in the same catalytic reaction. The maximum increase in the catalytic activity at 30°C attained values of 720%, 735% and 976% for the doped solids calcined at 350, 450 and 650°C, respectively. In contrast, however, such doping brought about a progressive measurable decrease in the catalytic activity of the treated solids towards CO oxidation by O2 when this latter reaction was conducted over the temperature range 150–250°C.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
M. A. Usman ◽  
T. O. Alaje ◽  
V. I. Ekwueme ◽  
E. A. Awe

Highly ordered mesoporous materials are opening the door to new opportunities in catalysis due to their extraordinary intrinsic features. In this study, Nickel was supported on highly ordered mesoporous silica (KIT-6) by the wet impregnation method, and its performance in the hydrogenation of edible vegetable oil was compared with that of Ni/Activated carbon prepared using the same method as well as with unsupported Nickel. The degree of conversion for the 50 : 50 Ni/KIT-6 was 81%, as compared to the 29% obtained with 50 : 50 Ni/Activated carbons. The conversion was found to improve with an increase in mass of supported Nickel on KIT-6 thus 20 : 80 Ni/KIT-6 and 30 : 70 Ni/KIT-6 produced conversions of 71% and 74%, respectively. Key among the benefits of KIT-6 when used as a support material is the very high surface area, open framework of the 3D bicontinuous interconnected channels, and the well-ordered mesopores which bestow on it an advanced mass transfer characteristics.


Sign in / Sign up

Export Citation Format

Share Document