Investigation of Local Corrosion Degradation Developed on a Pipeline System in Service Period

2017 ◽  
Vol 885 ◽  
pp. 92-97 ◽  
Author(s):  
Peter Trampus ◽  
Enikő Réka Fábián ◽  
Zsolt Kerner ◽  
Magda Lakatos-Varsányi ◽  
László Péter ◽  
...  

Corrosion degradation was observed in a nuclear power plant spent fuel cooling system. A systematic and comprehensive investigation program was developed which was negatively influenced by the limit of sampling (contaminated material). Corrosion tests, mechanical and microstructural investigations were carried out and also microbiological effect was examined. Major contributors to the degradation were identified.

2013 ◽  
Vol 479-480 ◽  
pp. 543-547
Author(s):  
Jong Rong Wang ◽  
Hao Tzu Lin ◽  
Wan Yun Li ◽  
Shao Wen Chen ◽  
Chun Kuan Shih

In the nuclear power plant (NPP) safety, the safety analysis of the NPP is very important work. In Fukushima NPP event, due to the earthquake and tsunami, the cooling system of the spent fuel pool failed and the safety issue of the spent fuel pool generated. In this study, the safety analysis of the Chinshan NPP spent fuel pool was performed by using TRACE and FRAPTRAN, which also assumed the cooling system of the spent fuel pool failed. There are two cases considered in this study. Case 1 is the no fire water injection in the spent fuel pool. Case 2 is the fire water injection while the water level of the spent fuel pool uncover the length of fuel rods over 1/3 full length. The analysis results of the case 1 show that the failure of cladding occurs in about 3.6 day. However, the results of case 2 indicate that the integrity of cladding is kept after the fire water injection.


2011 ◽  
Vol 145 ◽  
pp. 78-82 ◽  
Author(s):  
Jong Rong Wang ◽  
Hao Tzu Lin ◽  
Yung Shin Tseng ◽  
Chun Kuan Shih

In the nuclear power plant (NPP) safety, the safety analysis of the NPP is very important work. In Fukushima NPP event, due to the earthquake, the cooling system of the spent fuel pool failed and the safety issue of the spent fuel pool generated. After Fukushima NPP event, INER (Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) performed the safety analysis of the spent fuel pool for Chinshan NPP which also assumed the cooling system of the spent fuel pool failed. The geometry of the Chinshan NPP spent fuel pool is 12.17 m × 7.87 m × 11.61 m and the initial condition is 60 ¢J / 1.013 × 105 Pa. In general, the NPP safety analysis is performed by the thermal hydraulic codes. The advanced thermal hydraulic code named TRACE for the NPP safety analysis is developing by U.S. NRC. Therefore, the safety analysis of the spent fuel pool for Chinshan NPP is performed by TRACE. Besides, this safety analysis is also performed by CFD. The analysis result of TRACE and CFD are similar. The results show that the uncovered of the fuels occur in 2.7 days and the metal-water reaction of the fuels occur in 3.5 days after the cooling system failed.


Author(s):  
Qingmu Xu ◽  
Kun Cai ◽  
Jie Qin ◽  
Junkai Yuan ◽  
Juan Li

Water hammer phenomenon is a significant pressure wave in pipe system caused by momentum change when the moving fluid is forced to stop or change direction instantaneously. Common causes of water hammer are sudden valve closing at the end of a pipeline system, pump failure, check valve slam etc. The steam transportation pipeline system may also be vulnerable to water hammer when it confronts with the situation where liquid and steam co-exist. Water hammer often occurs when steam condenses into water in a horizontal section of steam piping. Then steam “picks up” water to form a high-velocity “slug” and create extra stress to pipe. When steam is trapped into sub-cooled water, the collapse of vapor cavity can lead to collision of two columns of liquid, resulting in a large rise in pressure which will damage pipes, supporting structures and hydraulic machinery. Nuclear power plant is composed of complex equipments and piping systems, lots of which contain both liquid and steam. Hence, there is a potential threat of occurrence of water hammer to the normal operation of systems. Thus, this phenomenon needs to be well investigated and prevented with some effective methods. For the purpose of overpressure relief under severe accidents, the spent fuel pool cooling system of CAP1000 series nuclear power plant provides a discharge passage from containment to spent fuel pool. When the containment pressure exceeds the control value, valve is opened to discharge high-temperature and high-pressure steam until the pressure drops to a safety value. During this process, serious water hammer happens, causing pressure rise beyond the design pressure and further leading to damages to pipes and structures. Therefore, water hammer of overpressure discharge pipeline in CAP1000 plant is studied in this work. On the basis of verification of the capabilities of computational code RELAP5/MOD3.3, hydraulic transient of water hammer is simulated under different conditions. It is indicated that after steam discharge stops, residual steam in pipe condenses because of contact with sub-cooled water in spent fuel pool. Subsequently, the rapid backflow and vapor cavity lead to a severe water hammer. The detailed analysis has shown that water temperature of spent fuel pool has a decisive influence on the mechanism of water hammer phenomenon, including collision of liquid column to valve disc and cavity collapse in the horizontal pipe. The collision and separation of liquid column result in relatively lower pressure amplitude.


2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Vanderley Vasconcelos ◽  
Wellington Antonio Soares ◽  
Raissa Oliveira Marques ◽  
Silvério Ferreira Silva Jr ◽  
Amanda Laureano Raso

Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. This inspection is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI is reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components, such as FMEA (Failure Modes and Effects Analysis) and THERP (Technique for Human Error Rate Prediction). An example by using qualitative and quantitative assessesments with these two techniques to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues, is presented.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205228 ◽  
Author(s):  
Rosane Silva ◽  
Darcy Muniz de Almeida ◽  
Bianca Catarina Azeredo Cabral ◽  
Victor Hugo Giordano Dias ◽  
Isadora Cristina de Toledo e Mello ◽  
...  

Zootaxa ◽  
2019 ◽  
Vol 4711 (2) ◽  
pp. 349-365
Author(s):  
VLADIMIR A. GUSAKOV ◽  
ANZHELIKA A. SYLAIEVA

A non-native oligochaete, Bratislavia dadayi (Michaelsen 1905), is recorded from a water body of the cooling system of the Khmelnitsky Nuclear Power Plant (Ukraine). This is the first registration of this species in the central part of the European continent, far from sea and river navigable waterways. The only previous record of B. dadayi in Europe had been from a Belgian estuary. The occurrence in samples taken over several years, and the presence of sexually mature individuals in the Ukrainian population indicate the worm’s successful naturalization in the new habitat. In this paper, we analyze the species’ morphology and abundance in the Ukrainian population and discuss its ecology, current and potential distribution. 


2019 ◽  
Vol 24 (1) ◽  
pp. 64-70
Author(s):  
Mingliang Xie ◽  
Fei Xie ◽  
Fuchang Shan ◽  
Zhengquan Xie ◽  
Mingrui Li ◽  
...  

1974 ◽  
Vol 41 (4) ◽  
pp. 1063-1068 ◽  
Author(s):  
A. Kalnins

A procedure for the analysis of dynamic buckling of axisymmetric shells subjected to axisymmetric, periodic loads of long duration is proposed that is based on the calculation of the nonsymmetric modes of free vibration and associated mode integrals over the reference surface of the shell. Numerical results are presented for the evaluation of dynamic stability of an actual shell that is designed for the cooling system of a nuclear power plant.


Sign in / Sign up

Export Citation Format

Share Document