Research on Crystallinity, Morphology of Cotton Subjected to Enzyme and Crosslinking Treatment

2017 ◽  
Vol 893 ◽  
pp. 71-76 ◽  
Author(s):  
Md. Nahid Pervez ◽  
Faizan Shafiq ◽  
Muhammad Munib Jilani ◽  
Zahid Sarwar ◽  
Ying Jie Cai

This paper explores the effect of prior enzymatic treatment on non-formaldehyde crosslinked cotton fiber and crystalline structure of cotton fibers after enzyme, crosslinking and a combination of enzyme and crosslinking treatments were examined by X-ray diffractometer. Results showed that during crosslinking treatment crystallinity index (%) values were increased with reduced crystallinity size and crosslinked of enzyme treated cotton did not change the crystalline nature of cotton (i.e. it was Cellulose I). In addition, by analysing FT-IR and SEM data it is confirmed that uniform presence of crosslinking agents was visible on cotton fibres.

1988 ◽  
Vol 58 (5) ◽  
pp. 299-301 ◽  
Author(s):  
S. Sreenivasan ◽  
K. R. Krishna Iyer ◽  
P. K. Chidambareswaran ◽  
N. B. Patil

X-ray orientation profiles were recorded that pertained to the three equatorial planes from cotton fibers containing both cellulose I and II lattices and from viscose fibers. The changes in orientation brought about by swelling and stretching treatments could be accurately followed by studying the distribution of any one of the diffraction arcs.


1941 ◽  
Vol 14 (1) ◽  
pp. 273-288
Author(s):  
R. F. Nickerson

Abstract The study by chemical methods of the constitution, derivatives, and properties of cellulose has yielded a voluminous literature and a wealth of useful information. Microscopic and x-ray investigations have produced much new and valuable knowledge of cellulose and its structure. But relatively little attention is given to the mechanical properties of cellulosic fibers, although such properties reflect fiber structure and frequently determine suitability to specific applications. An exhaustive review of the relevant literature on cotton has not been undertaken in this paper; rather, the object is to summarize the available data on constitution and properties and, wherever possible, to indicate their relations to the most probable fiber structure. In this way the material as a whole is integrated into a working concept of the cotton fiber.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Samuel Tetteh ◽  
Andrews Quashie ◽  
Michael Akrofi Anang

Three clay samples (E1, E2, and C1) extracted from different parts of Ghana have been purified by sedimentation. The samples were further characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), cation exchange capacity (CEC), and point of zero charge (pHpzc). PXRD and FT-IR data revealed the samples to be predominantly muscovite clay with percentages ranging from 82.71 to 91.33%. The surfaces were mostly cationic with pHpzc ranging from 5.58 to 6.40. Morphological studies by SEM confirmed the crystalline nature of the surfaces which is suitable for adsorption studies. Time-dependent adsorption studies show that C1 is a good candidate for the adsorption of chlorophenols, methyl orange, and Eriochrome Black T.


2013 ◽  
Vol 678 ◽  
pp. 248-252
Author(s):  
K. Kavi Rasu ◽  
Dhandapani Vishnushankar ◽  
V. Veeravazhuthi

Bismuth sulfide (Bi2S3) and Polyvinyl pyrrolidone (PVP) encapsulated Bi2S3 Nanoparticles are synthesized from aqueous solutions at room temperature. Synthesized samples are subjected to UV-Visible Spectroscopy, X-Ray Diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive Analysis of X-ray (EDAX), Transmission Electron Microscopy (TEM) and FT-IR studies and their results are compared. X-ray diffraction spectrum reveals the crystalline nature of the synthesized samples. Grain size value of PVP/ Bi2S3 nanoparticles show a decrease when compared to Bi2S3 nanoparticles and this ensures the good encapsulant effect of PVP on Bi2S3 nanoparticles. SEM images show that all the particles in the synthesized sample are nearly equal in size. From the TEM image we conclude that the particle size lies between 30nm to 70nm. Finally the samples are subjected to EDAX studies for determining their composition.


2013 ◽  
Vol 652-654 ◽  
pp. 1539-1542
Author(s):  
Hou Jie Zhao ◽  
Chun Yan Wei ◽  
Yong Zhu Cui ◽  
Li Hua Lv ◽  
Xiao Wang

In this paper, regeneration of reed leaf fibers that have been degummed pretreatment in high temperature and pressure dissolved in 1-butyl-3-methylimidazolium chloride ionic liquids was studied. The samples containing 5% or 10%(wt/wt)reed leaf fibers in the ionic liquids, at 90°C for 7h.The dissolution process was viewed by polarizing microscope. Fourier-transform infrared spectroscopy(FT-IR) and X-ray diffraction were used to visualize the crystalline of reed leaf fiber transformed completely from cellulose I to cellulose Ⅱ after regenerated directly from 1-butyl-3-methylimidazolium chloride solution.


2021 ◽  
Vol 2 (01) ◽  
pp. 75-82
Author(s):  
Sharmila Pradhan Amatya ◽  
Santu Shrestha ◽  
Yadav Aryal

This research mainly aims at implementing green approach for synthesizing multifunctional manganese nanoparticles (MnNPs) using aqueous extract of banana peel (Musa paradiasca) and potassium permanganate (KMnO4) as the precursor. As synthesized MnNPs were confirmed initially by a color change and later on characterized by UV-visible (UV-vis) Spectrophotometer, Energy Dispersive Spectroscopy (EDX), X-ray Diffraction Spectroscopy (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Green approach was carried at various parameters like concentration of precursor solution, reaction time, temperature, etc for optimization. The formation of MnNPs was confirmed by the presence of surface plasmon absorbance band  (450 nm) and band at 6 and 6.5 keV of EDX spectrum. Likewise, so formed MnNPs were crystalline nature depicted from the sharp peak observed at 28.5º and 41° in X-ray diffraction pattern. Various types of biomolecules associated with the banana peel extract acting as natural reducer and stabilizer were analyzed from characteristic absorption bands present in the FT-IR spectrum.


Author(s):  
Sunardi Sunardi ◽  
Wiwin Tyas Istikowati ◽  
Norhidayah Norhidayah ◽  
Dahlena Ariyani ◽  
Azlan Kamari

Microcrystalline cellulose is an important derivative of cellulosic material obtained from wood and non-wood sources, and is used for pharmaceutical, food, cosmetics, and other industries. The aim of this study was to determine the effect of various hydrochloric acid concentrations on the characteristics of cellulose microcrystals isolated from terap wood (Artocarpus elasticus). The microcrystalline cellulose was hydrolyzed using hydrochloric acid, at concentrations of 1.5 N, 2.5 N, and 3.5 N for 15 minutes, and within a temperature range of 100-105o C. Thesamples were then analyzed for changes in color and functional groups with Fourier Transform Infrared spectroscopy (FTIR), while crystallinity index was evaluated through X-Ray Diffraction Analysis (X-RDF). The FTIR results showed similarity with commercial products, while X-Ray Diffraction confirms the highest crystallinity index in the 2.5 N of cellulose I (69.395 %) and cellulose II (82.73 %).


2019 ◽  
Vol 793 ◽  
pp. 59-63
Author(s):  
Wei Dong Li ◽  
Xuan Li ◽  
Ming Hui Xu

The morphology, microfiber structure, crystalline structure, mechanical properties and thermal behavior of the Akund were studied with SEM, FT-IR, TG and XRD analysis, and compared with cotton fibers. Its mechanical properties, moisture content and moisture regain were tested, and its solubility was analyzed in different solutions.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2570
Author(s):  
Oana Cadar ◽  
Marin Senila ◽  
Maria-Alexandra Hoaghia ◽  
Daniela Scurtu ◽  
Ion Miu ◽  
...  

This study presents the effect of thermal treatment (450, 500, 600, 750, and 800 °C) on a Romanian clinoptilolite-rich natural zeolite, along with the interaction of raw and thermally treated zeolites with simulated gastric fluid (SGF, pH = 1.20) at different zeolite to SGF ratios and exposure times. The zeolites were characterized using gravimetric analysis, X-ray fluorescence, powder X-ray diffraction (pXRD), and Fourier transform infrared (FT-IR) spectroscopy. The chemical composition of the zeolite subjected to thermal treatment did not change significantly with the increase of temperature. Structural changes were not detectable by pXRD and FT-IR analyses in the zeolites thermally treated up to 500 °C, while above 600 °C a gradual structural breakdown of zeolite was noticed. At high temperatures, the broad, low-intensity peaks in pXRD patterns indicated the partial amorphization of the crystalline structure. The pXRD and FT-IR analyses showed that the crystalline structure of zeolites remains unaffected after their exposure to SGF. The results revealed that the amounts of Fe, Na, Mg, K, Ca, Al, and Si released depends mainly on the zeolite to SGF ratio, and to a lower extent on the thermal treatment temperature, while the exposure time of 1 to 7 days does not have a significant impact on the elements released in SGF.


1988 ◽  
Vol 58 (2) ◽  
pp. 96-101 ◽  
Author(s):  
Stanley P. Rowland ◽  
Phyllis S. Howley

The extent of hydrogen bonding of O(3)H and O(6)H in “amorphous” regions, more specifically in accessible segments of fibrils, of the cotton fiber varied from near perfection to almost complete disorder in samples under examination. Perfection of hydrogen bonding in various samples and segments of cotton fibers decreased with decreasing crystallinity of the cellulose within the fibrils. For the most part, extents of O(3)H hydrogen bonding and O(6)H hydrogen bonding followed similar patterns with substantial differences in degrees of perfection, the O(3)H ranging from about 95% hydrogen bonding down to 8% and the O(6)H) from 92% down to 41%. Details of hydrogen bonds assessed in these chemical studies are discussed relative to crystallinities and assignments of hydrogen bond structures from x-ray diffraction studies.


Sign in / Sign up

Export Citation Format

Share Document