X-Ray Orientation of Equatorial Planes in Swollen and Stretched Cellulosic Fibers

1988 ◽  
Vol 58 (5) ◽  
pp. 299-301 ◽  
Author(s):  
S. Sreenivasan ◽  
K. R. Krishna Iyer ◽  
P. K. Chidambareswaran ◽  
N. B. Patil

X-ray orientation profiles were recorded that pertained to the three equatorial planes from cotton fibers containing both cellulose I and II lattices and from viscose fibers. The changes in orientation brought about by swelling and stretching treatments could be accurately followed by studying the distribution of any one of the diffraction arcs.

2017 ◽  
Vol 893 ◽  
pp. 71-76 ◽  
Author(s):  
Md. Nahid Pervez ◽  
Faizan Shafiq ◽  
Muhammad Munib Jilani ◽  
Zahid Sarwar ◽  
Ying Jie Cai

This paper explores the effect of prior enzymatic treatment on non-formaldehyde crosslinked cotton fiber and crystalline structure of cotton fibers after enzyme, crosslinking and a combination of enzyme and crosslinking treatments were examined by X-ray diffractometer. Results showed that during crosslinking treatment crystallinity index (%) values were increased with reduced crystallinity size and crosslinked of enzyme treated cotton did not change the crystalline nature of cotton (i.e. it was Cellulose I). In addition, by analysing FT-IR and SEM data it is confirmed that uniform presence of crosslinking agents was visible on cotton fibres.


1941 ◽  
Vol 14 (1) ◽  
pp. 273-288
Author(s):  
R. F. Nickerson

Abstract The study by chemical methods of the constitution, derivatives, and properties of cellulose has yielded a voluminous literature and a wealth of useful information. Microscopic and x-ray investigations have produced much new and valuable knowledge of cellulose and its structure. But relatively little attention is given to the mechanical properties of cellulosic fibers, although such properties reflect fiber structure and frequently determine suitability to specific applications. An exhaustive review of the relevant literature on cotton has not been undertaken in this paper; rather, the object is to summarize the available data on constitution and properties and, wherever possible, to indicate their relations to the most probable fiber structure. In this way the material as a whole is integrated into a working concept of the cotton fiber.


2021 ◽  
Vol 16 ◽  
pp. 155892502199275
Author(s):  
Ajinkya Powar ◽  
Anne Perwuelz ◽  
Nemeshwaree Behary ◽  
Le vinh Hoang ◽  
Thierry Aussenac ◽  
...  

Color stripping is one of the most convenient ways to rectify the various shade faults occurred during printing or dyeing process of textiles. But, the conventional chemical assisted process poses serious risk of the environmental pollution. Secondly, the chemical recycling of the cellulosic fibers may be disrupted due to the presence of the impurities like colorants, finishes, and the additives in the discarded textiles. So, there is a need to study ways to remove such impurities from the discarded cellulosic textiles in a sustainable manner. This work examines the decolorization of the pigment prints on cellulosic fabrics at pilot scale using an ozone-assisted process. The effect of varying pH, ozone concentration and the treatment time on the decolorization of the pigment prints was optimized using the response surface methodology technique. The effects of ozonation process parameters on the mechanical properties of cellulosic cotton fabric were measured. Decolorization of pigment printed samples was studied with respect to the surface effects by a scanning electron microscopy (SEM), and the chemical removal effects of ozonation treatment were studied using X-ray photoelectron spectroscopy. The possible mechanism regarding the action of ozone for the decolorization is discussed.


1981 ◽  
Vol 51 (11) ◽  
pp. 722-724 ◽  
Author(s):  
A.R. Kalyanaraman
Keyword(s):  

2017 ◽  
Vol 4 (8) ◽  
pp. 170487 ◽  
Author(s):  
Marta Gubitosi ◽  
Pegah Nosrati ◽  
Mona Koder Hamid ◽  
Stefan Kuczera ◽  
Manja A. Behrens ◽  
...  

We have characterized the dissolution state of microcrystalline cellulose (MCC) in aqueous tetrabutylammonium hydroxide, TBAH(aq), at different concentrations of TBAH, by means of turbidity and small-angle X-ray scattering. The solubility of cellulose increases with increasing TBAH concentration, which is consistent with solubilization driven by neutralization. When comparing the two polymorphs, the solubility of cellulose I is higher than that of cellulose II. This has the consequence that the dissolution of MCC (cellulose I) may create a supersaturated solution with respect to cellulose II. As for the dissolution state of cellulose, we identify three different regimes. (i) In the stable regime, corresponding to concentrations below the solubility of cellulose II, cellulose is molecularly dissolved and the solutions are thermodynamically stable. (ii) In the metastable regime, corresponding to lower supersaturations with respect to cellulose II, a minor aggregation of cellulose occurs and the solutions are kinetically stable. (iii) In the unstable regime, corresponding to larger supersaturations, there is macroscopic precipitation of cellulose II from solution. Finally, we also discuss strong alkali solvents in general and compare TBAH(aq) with the classical NaOH(aq) solvent.


2020 ◽  
Vol 990 ◽  
pp. 225-230
Author(s):  
Kraiwit Pakutsah ◽  
Duangdao Aht-Ong

In this work, we described an effective approach to prepare nanofibrillated cellulose (NFC) with cellulose II structure under mild condition. Firstly, the water hyacinth (WH) was subjected to a series of a two-step chemical treatment, NaOH/urea pretreatment, and mechanical defibrillation at different defibrillation times. After that, raw water hyacinth fiber (RWF), bleached water hyacinth fiber (BWF), NaOH/urea pretreated water hyacinth fiber (PWF), and the resulting NFC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) as well as rheological measurements. It was found that RWF and BWF exhibited cellulose I crystal structure, whereas PWF and the obtained NFC possessed cellulose II crystal structure. FTIR analysis confirmed the evidence that no other chemical reactions preferentially occurred during both NaOH/urea pretreatment and mechanical defibrillation. As evidenced by rheological properties analysis, the NFC aqueous suspension with a gel-like structure demonstrated a shear-thinning behavior. The obtained NFC could potentially be utilized as a reinforcement for polymeric composites.


2011 ◽  
Vol 12 (11) ◽  
pp. 4121-4126 ◽  
Author(s):  
Alenka Kljun ◽  
Thomas A. S. Benians ◽  
Florence Goubet ◽  
Frank Meulewaeter ◽  
J. Paul Knox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document