Effect of Ge Thin Layer Position on Formation and Property of CZTSSe Thin Films and Solar Cells Prepared by Sputtering Method

2017 ◽  
Vol 895 ◽  
pp. 23-27
Author(s):  
Jin Ze Li ◽  
Hong Lie Shen ◽  
Yu Fang Li ◽  
Wei Wang

In this work we deposited a Ge thin layer under or upon Cu-Zn-Sn-S precursor by sputtering, followed by selenization process to obtain Ge doped CZTSSe thin films. A comparison of structural, morphology and optoelectrical property on Ge doped CZTSSe thin films with different Ge layer position was studied. It was found that even a little amount of Ge doping could affect the crystallization of CZTSSe grains. The solar cells based on two kinds of precursors both had VOC improvement compared with undoped CZTSSe solar cell. However, due to the inner stress in CZTSSe thin film, cracks appeared between the interface of buffer layer and window layer in CZTSSe solar cell with Ge bottom layer, leading to the decrease of conversion efficiency. With the help of Ge in reducing bulk recombination, CZTSSe solar cell based on Cu-Zn-Sn-S precursor with Ge top layer had a conversion efficiency of 5.38%, in contrast to 3.01% and 4.30% of CZTSSe solar cell with Ge bottom layer and undoped CZTSSe solar cell, respectively.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Kangho Kim ◽  
Hoang Duy Nguyen ◽  
Sunil Mho ◽  
Jaejin Lee

The GaAs solar cells are grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) and fabricated by photolithography, metal evaporation, annealing, and wet chemical etch processes. Anodized aluminum oxide (AAO) masks are prepared from an aluminum foil by a two-step anodization method. Inductively coupled plasma dry etching is used to etch and define the nanoarray structures on top of an InGaP window layer of the GaAs solar cells. The inverted-cone-shaped nanoholes with a surface diameter of about 50 nm are formed on the top surface of the solar cells after the AAO mask removal. Photovoltaic and optical characteristics of the GaAs solar cells with and without the nanohole arrays are investigated. The reflectance of the AAO nanopatterned samples is lower than that of the planar GaAs solar cell in the measured range. The short-circuit current density increased up to 11.63% and the conversion efficiency improved from 10.53 to 11.57% under 1-sun AM 1.5 G conditions by using the nanohole arrays. Dependence of the efficiency enhancement on the etching depth of the nanohole arrays is also investigated. These results show that the nanohole arrays fabricated with an AAO technique may be employed to improve the light absorption and, in turn, the conversion efficiency of the GaAs solar cell.


2019 ◽  
Vol 793 ◽  
pp. 35-39
Author(s):  
Luan Hong Sun ◽  
Hong Lie Shen ◽  
Hu Lin Huang ◽  
Hui Rong Shang

To reveal the effects of annealing condition on CZTSSe thin film solar cells, co-sputtering and subsequent selenization were used to prepare CZTSSe thin films. Structural, morphological and optical properties of CZTSSe thin films were investigated. CZTSSe thin films with various Se/(S+Se) ratio ranging from 0.69-0.78 were obtained. Representative peaks corresponding to CZTSSe in XRD and Raman results showed a slight shift to lower diffraction angle and wavenumbers. Selenization time significantly influenced the morphologies of CZTSSe films and the gradual grown up grain size was observed. VOCdeficit values down to 839 mV was achieved for the best cell. CZTSSe solar cell with the selenization time of 10 min showed a best conversion efficiency of 5.32%, which presented a 50% enhancement comparing to the solar cells with insufficient and over-selenized absorbers.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Xing Yang ◽  
Jiangtao Bian ◽  
Zhengxin Liu ◽  
Shuai Li ◽  
Chao Chen ◽  
...  

A conversion efficiency of 20.23% of heterojunction with intrinsic thin layer (HIT) solar cell on 156 mm × 156 mm metallurgical Si wafer has been obtained. Applying AFORS-HET software simulation, HIT solar cell with metallurgical Si was investigated with regard to impurity concentration, compensation level, and their impacts on cell performance. It is known that a small amount of impurity in metallurgical Si materials is not harmful to solar cell properties.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


RSC Advances ◽  
2014 ◽  
Vol 4 (92) ◽  
pp. 50988-50992 ◽  
Author(s):  
Tao Yuan ◽  
Dong Yang ◽  
Xiaoguang Zhu ◽  
Lingyu Zhou ◽  
Jian Zhang ◽  
...  

The power conversion efficiency of a PTB7:PC71BM polymer solar cell was improved up to 9.1% by a combination of methanol treatment followed by conjugation of a water- or alcohol-soluble polyelectrolyte thin layer.


2015 ◽  
Vol 19 (01-03) ◽  
pp. 175-191 ◽  
Author(s):  
Ganesh D. Sharma ◽  
Galateia E. Zervaki ◽  
Kalliopi Ladomenou ◽  
Emmanuel N. Koukaras ◽  
Panagiotis P. Angaridis ◽  
...  

Two porphyrin dyads with the donor-π-acceptor molecular architecture, namely ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which consist of a zinc-metalated porphyrin unit and a free-base porphyrin unit covalently linked at their peripheries to a central triazine group, substituted either by a glycine in the former or a N-piperidine group in the latter, have been synthesized via consecutive amination substitution reactions of cyanuric chloride. The UV-vis absorption spectra and cyclic-voltammetry measurements of the two dyads, as well as theoretical calculations based on Density Functional Theory, suggest that they have suitable frontier orbital energy levels for use as sensitizers in dye-sensitized solar cells. Dye-sensitized solar cells based on ( ZnP )-[triazine-gly]-( H 2 PCOOH ) and ( ZnP )-[triazine-Npip]-( H 2 PCOOH ) have been fabricated, and they were found to exhibit power conversion efficiency values of 5.44 and 4.15%, respectively. Photovoltaic measurements (J–V curves) and incident photon to current conversion efficiency spectra of the two solar cells suggest that the higher power conversion efficiency value of the former solar cell is a result of its enhanced short circuit current, open circuit voltage, and fill factor values, as well as higher dye loading. This is ascribed to the existence of two carboxylic acid anchoring groups in ( ZnP )-[triazine-gly]-( H 2 PCOOH ), compared to one carboxylic acid group in ( ZnP )-[triazine-Npip]-( H 2 PCOOH ), which leads to a more effective binding onto the TiO 2 photoanode. Electrochemical impedance spectra show evidence that the ( ZnP )-[triazine-gly]-( H 2 PCOOH ) based solar cell exhibits a longer electron lifetime and more effective suppression of charge recombination reactions between the injected electrons and electrolyte.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1905 ◽  
Author(s):  
Sarath Gutierrez ◽  
Kenya Hazell ◽  
John Simonsen ◽  
Seri Robinson

Intarsia was an art form popular between the 15th–18th centuries that used wood pigmented by spalting fungi to create detailed landscapes, portraits, and other imagery. These fungi are still used today in art but are also finding relevance in material science as elements of solar cells, textile dyes, and paint colorants. Here we show that the spalting fungus Scytalidium cuboideum (Sacc. and Ellis) Sigler and Kang produces a red/pink pigment that forms two distinct colors of crystals (red and orange)—a very rare occurrence. In addition, a second structure of the crystal is proved through nuclear magnetic resonance (NMR). This is only the second instance of a stable, naphthoquinone crystal produced by a fungus. Its discovery is particularly valuable for solar cell development, as crystalline materials have a higher electrical conductivity. Other fungi in this order have shown strong potential as thin films for solar cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Minghua Li ◽  
Hui Shen ◽  
Lin Zhuang ◽  
Daming Chen ◽  
Xinghua Liang

In this work we prepared double-layer antireflection coatings (DARC) by using the SiO2/SiNx:H heterostructure design. SiO2thin films were deposited by electron-beam evaporation on the conventional solar cell with SiNx:H single-layer antireflection coatings (SARC), while to avoid the coverage of SiO2on the front side busbars, a steel mask was utilized as the shelter. The thickness of the SiNx:H as bottom layer was fixed at 80 nm, and the varied thicknesses of the SiO2as top layer were 105 nm and 122 nm. The results show that the SiO2/SiNx:H DARC have a much lower reflectance and higher external quantum efficiency (EQE) in short wavelengths compared with the SiNx:H SARC. A higher energy conversion efficiency of 17.80% was obtained for solar cells with SiO2(105 nm)/SiNx:H (80 nm) DARC, an absolute conversion efficiency increase of 0.32% compared with the conventional single SiNx:H-coated cells.


1980 ◽  
Vol 19 (11) ◽  
pp. 2165-2173 ◽  
Author(s):  
Akihiko Yoshikawa ◽  
Shigeki Yamaga ◽  
Haruo Kasai ◽  
Masao Nishimaki

Sign in / Sign up

Export Citation Format

Share Document