Al+ Ion Implanted 4H-SiC Vertical p+-i-n Diodes: Processing Dependence of Leakage Currents and OCVD Carrier Lifetimes

2017 ◽  
Vol 897 ◽  
pp. 439-442 ◽  
Author(s):  
Roberta Nipoti ◽  
Maurizio Puzzanghera ◽  
Giovanna Sozzi

The reverse and forward currents of Al+ ion implanted 4H-SiC p+-i-n diodes have been compared for identically processed devices except for the implanted Al concentration in the emitter, 6×1019 cm-3 against 2×1020 cm-3, and the post implantation annealing treatment, 1600°C/30 min and 1650°C/25 min against 1950°C/5min. The diodes’ ambipolar carrier lifetime, as obtained by open circuit voltage decay measurements, has been compared too. The devices with lower annealing temperature show lower leakage currents and higher ambipolar carrier lifetime; they also show lower current in ohmic conduction.

2007 ◽  
Vol 17 (01) ◽  
pp. 43-48 ◽  
Author(s):  
P. A. Losee ◽  
C. Li ◽  
R. J. Kumar ◽  
T. P. Chow ◽  
I. B. Bhat ◽  
...  

The key material and device parameters governing the electrical performance of high voltage 4 H - SiC PiN diodes have been investigated using experimental results and numerical simulations. Reverse recovery characteristics show an increase in both carrier lifetime and anode injection efficiency at elevated temperature. Open circuit voltage decay measurements are used to estimate carrier lifetimes (τ≈0.6μ s at T =25° C increasing to τ≈2μ s at T =225° C ) that are comparable to values measured on starting material prior to fabrication using micro-wave photoconductivity decay techniques.


2009 ◽  
Vol 615-617 ◽  
pp. 703-706 ◽  
Author(s):  
Nicolas Dheilly ◽  
Dominique Planson ◽  
Pierre Brosselard ◽  
Jawad ul Hassan ◽  
Pascal Bevilacqua ◽  
...  

This paper reports on the influence of temperature on the electrical carrier lifetime of a 3.3 kV 4H-SiC PiN diode processed with a new generation of SiC material. The Open Circuit Voltage Decay (OCVD) is used to evaluate ambipolar lifetime evolution versus temperature. The paper presents a description of the setup, electrical measurements and extraction fittings. The ambipolar lifetime is found to rise from 600 ns at 30 °C to 3.5 μs at 150 °C.


1999 ◽  
Vol 572 ◽  
Author(s):  
R. K. Chilukuri ◽  
P. Ananthanarayanan ◽  
V. Nagapudi ◽  
B. J. Baliga

ABSTRACTIn this paper, we report the successful use of field plates as planar edge terminations for P+-N as well as N+-P planar ion implanted junction diodes on 6H- and 4H-SiC. Process splits were done to vary the dielectric material (SiO2 vs. Si3N4), the N-type implant (nitrogen vs. phosphorous), the P-type implant (aluminum vs. boron), and the post-implantation anneal temperature. The nitrogen implanted diodes on 4H-SiC with field plates using SiO2 as the dielectric, exhibited a breakdown voltage of 1100 V, which is the highest ever reported measured breakdown voltage for any planar ion implanted junction diode and is nearly 70% of the ideal breakdown voltage. The reverse leakage current of this diode was less than 1×10−5 A/cm2 even at breakdown. The unterminated nitrogen implanted diodes blocked lower voltages (∼840V). In contrast, the unterminated aluminum implanted diodes exhibited higher breakdown voltages (∼80OV) than the terminated diodes (∼275V). This is attributed to formation of a high resistivity layer at the surface near the edges of the diode by the P-type ion implant, acting as a junction termination extension. Diodes on 4H-SiC showed higher breakdown than those on 6H-SiC. Breakdown voltages were independent of temperature in the range of 25 °C to 150 °C, while the leakage currents increased slowly with temperature, indicating surface dominated components.


2005 ◽  
Vol 483-485 ◽  
pp. 417-420 ◽  
Author(s):  
Sergey A. Reshanov ◽  
Gerhard Pensl

Minority carrier (hole) lifetime investigations are conducted on identical 6H-SiC p+-n structures by electrical (reverse recovery, open circuit voltage decay) and optical (time-resolved photoluminescence) techniques. The p+-n diodes are fabricated by Al implantation. Depending on the particular analysis technique, the lifetime is determined either electrically in different regions of the p+-n diode or optically in the n-type 6H-SiC epilayer and results, therefore, in different values ranging from ≈10 ns to 2.5 µs.


1996 ◽  
Vol 422 ◽  
Author(s):  
M. Morse ◽  
B. Zheng ◽  
J. Palm ◽  
X. Duan ◽  
L. C. Kimerling

AbstractWe have fabricated Si:Er films by ion implantation and ultra-high vacuum chemical vapor deposition (UHV-CVD). The energy of the ion implantation was varied from 200 keV to 4.5 MeV. Oxygen was co-implanted to overlap the erbium profile. At implant energies of 400 keV, we found that the luminescence was optimized at a lower annealing temperature (800° C, 30 minutes) than that needed for the 4.5 MeV implant (900°C, 30 minutes). The light intensity per erbium atom is critically dependent on the implantation energy. However, spreading resistance measurements show that the donor activity of the implanted erbium is independent of energy. We have correlated the donor activity with quantum efficiency by varying the donor spatial distribution and concentration through post implantation heat treatments.For the UHV-CVD grown Si:Er films, two erbium metallorganic precursors, Er(TMHD)3 and Er(FOD)3. have been used for growths from 550–620°C. The thickness of the erbium layers are similar to that of implanted devices but the Er concentration of 4 × 1021/cm3 exceeded the implanted material by two orders of magnitude.


2004 ◽  
Vol 1 (2) ◽  
pp. 321-325
Author(s):  
Baghdad Science Journal

The measurement of minority carrier lifetime (MCLT) ofp-n Si fabricated with aid of laser doping technique was reported. The measurement is achieved by using open circuit voltage decay (OCVD) technique. The experiment data confirms that the value of MCLT and proftle of Voc decay were very sensitive to the doping laser energy.


1985 ◽  
Vol 49 ◽  
Author(s):  
Z E. Smith ◽  
S. Wagner

AbstractThe light-induced performance degradation of amorphous silicon solar cells is described well by a model in which the carrier lifetimes are determined by the dangling bond density. The kinetics of the defect generation follow the model in which band-to-band recombination provides the energy for the creation of dangling bonds, which in turn introduce gap states that reduce carrier lifetime. Degradation will be slower in solar cells operating at lower excess carrier concentrations. This is documented with a comparison of degradation data for cells of different i-layer thickness, cells operating at open circuit vs. load, and for single vs. cascade cells. The model also correctly predicts the relation between short circuit current and fill factor degradation. At sufficiently long times, the efficiency will decrease at approximately the same rate for all cell structures and dimensions, with an offset in time between different device types which can be calculated.


Sign in / Sign up

Export Citation Format

Share Document