Synthesis and Characterization of TiO2/CNT Nanocomposites for Azo Dye Degradation

2017 ◽  
Vol 909 ◽  
pp. 243-248 ◽  
Author(s):  
Shu Huei Hsieh ◽  
Wen Jauh Chen

Pure TiO2 nanoparticles, TiO2/9 wt %CNT and TiO2/18 wt %CNT nanocomposites were fabricated by sol-gel method and the CNTs in TiO2/CNT nanocomposite were grown under the catalysis of Ni film in thermally chemical deposition process. The TiO2/CNT was characterized and analyzed by field-emission scanning electron microscope, transmission electron microscope, and x-ray diffractometer. The results showed that the pure TiO2 nanoparticles have anatase form when calcination temperature T ≦ 500 °C, and partly become rutile form when T ≧ 550 °C. The CNTs embedded in TiO2 could retard the phase transformation of TiO2 from anatase into rutile. The grain sizes of anatase and rutile phases ranged from 10.1 to 27.7 nm and essentially increase with increase in calcinations temperature. The CNTs in composite could reduce the adsorption and the photocatalytic degradation of azo dye (AO7).

2016 ◽  
Vol 720 ◽  
pp. 290-295
Author(s):  
Veni Takarini ◽  
Alfend Rudyawan ◽  
Andri Hardiansyah ◽  
Rifki Septawendar ◽  
Niki Prastomo ◽  
...  

This study prepared Magnesium-Partially Stabilized Zirconia (Mg-PSZ) filler synthesis and direct foaming technique using egg whites, and impregnated by PMMA. The results were evaluated systematically by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). XRD results denote that the powder sample of MgPSZ was successfully formed with various crystal size of tetragonal and monoclinic phase. SEM and TEM observations revealed that nanoparticles MgPSZ were in spherical and long rounded shapes. Furthermore, SEM observation revealed that the direct foaming method were also successful in the formation of porous structures which favourable for impregnation process by PMMA. The use of egg whites as a polymer precursor in both methods demonstrates that porous specimens contained nanosized, predominantly tetragonal, Mg-PSZ powders were successfully synthesized. This shall yield an interesting prospect towards cheap, reliable, and biocompatible product to resemble the modulus elasticity of dentin.


Author(s):  
Tang Ing Hua ◽  
Rita Sundari

This study has encountered with the fabrication of ferrites (Mg and Mn) using citric acid as anionic surfactant in sol-gel method followed by calcinations at varied temperatures (300, 600, 800°C) for 2h, respectively. The fabricated ferrites have been characterized by FTIR (Fourier Transform Infrared Spectroscopy), XRD (X-Ray Diffraction), SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope). The FTIR spectrum for MnFeO3 shows that some functional groups already removed under 300°C calcination due to several oxidation numbers possessed by Mn leading to more flexibility. The XRD diffractograms for both MgFe2O4 and MnFeO3 show that the transition phase from amorphous to crystalline structure occurred in the temperature range of 300-600°C. The SEM mappings based on the Fe distribution for both MgFe2O4 and MnFeO3 show that more Fe distributed over the ferrites surface at 600 and 800°C, while the SEM mappings for both ferrites (Mg and Mn) show less Fe distribution at 300°C calcination, thus, it indicates more repulsion force bearing by higher amounts of Fe atoms at higher thermal agitation due to volume expansion. The TEM spectra proved that both ferrites existed as crystals after calcined at 600°C. The fabricated ferrites have remarkable electrical properties useful for the manufacture of semiconducting materials.


2016 ◽  
Vol 680 ◽  
pp. 189-192
Author(s):  
Zhao Jun Liu ◽  
Kang Ning Sun ◽  
Ai Min Li ◽  
Xiao Ning Sun ◽  
Shu Pin Zhang

In this study, LiZn ferrites with different content of CNTs (1%-9%) were successfully prepared by a sol-gel method. X-ray diffraction pattern exhibit a relatively high crystallinity of the Li0.25Zn0.5Fe2.25O4/CNTs composite, and the CNTs still exist after acid treatment and subsequent heat treatment. Then the composite was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), the results demonstrate that the particles are nearly spherical in shape and agglomerated to some extent. By a sol-gel method and subsequent calcination, the temperature of LiZn ferrites/CNTs temperature control biomaterials gradually increase and maintain at a certain temperature in the alternating magnetic field, so it can be a potential material used for hyperthermia applications.


Author(s):  
T. C. Tisone ◽  
S. Lau

In a study of the properties of a Ta-Au metallization system for thin film technology application, the interdiffusion between Ta(bcc)-Au, βTa-Au and Ta2M-Au films was studied. Considered here is a discussion of the use of the transmission electron microscope(TEM) in the identification of phases formed and characterization of the film microstructures before and after annealing.The films were deposited by sputtering onto silicon wafers with 5000 Å of thermally grown oxide. The film thicknesses were 2000 Å of Ta and 2000 Å of Au. Samples for TEM observation were prepared by ultrasonically cutting 3mm disks from the wafers. The disks were first chemically etched from the silicon side using a HNO3 :HF(19:5) solution followed by ion milling to perforation of the Au side.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


2005 ◽  
Vol 38 (1) ◽  
pp. 211-216 ◽  
Author(s):  
Pang-Hung Liu ◽  
Kuei-Jung Chao ◽  
Xing-Jian Guo ◽  
Kuo-Ying Huang ◽  
Yen-Ru Lee ◽  
...  

A continuous silica film with well aligned mesochannels parallel to the Si(001) surface was found to be formed through sol–gel dip-coating of a silica precursor with nonionic ethylene oxide surfactant. Two two-dimensional mesoporous structures in centered and non-centered rectangular symmetries and with the short axes of elongated ellipsoidal pores normal to the surface were observed by X-ray and electron diffraction. Detailed transmission electron microscopy investigations were employed to view the direction dependence of the channel or pore packing in the continuous film.


2017 ◽  
Vol 2 (3) ◽  
pp. 174-185 ◽  
Author(s):  
Hu Zhao ◽  
Bao Qiu ◽  
Haocheng Guo ◽  
Kai Jia ◽  
Zhaoping Liu ◽  
...  

2000 ◽  
Vol 6 (S2) ◽  
pp. 228-229
Author(s):  
M. A. Schofield ◽  
Y. Zhu

Quantitative off-axis electron holography in a transmission electron microscope (TEM) requires careful design of experiment specific to instrumental characteristics. For example, the spatial resolution desired for a particular holography experiment imposes requirements on the spacing of the interference fringes to be recorded. This fringe spacing depends upon the geometric configuration of the TEM/electron biprism system, which is experimentally fixed, but also upon the voltage applied to the biprism wire of the holography unit, which is experimentally adjustable. Hence, knowledge of the holographic interference fringe spacing as a function of applied voltage to the electron biprism is essential to the design of a specific holography experiment. Furthermore, additional instrumental parameters, such as the coherence and virtual size of the electron source, for example, affect the quality of recorded holograms through their effect on the contrast of the holographic fringes.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


Sign in / Sign up

Export Citation Format

Share Document