Experimental Study on the Relationship of Discharge Parameters with Crack Arrest Effects in Inconel 625 Alloy by Electropulsing Treatment

2017 ◽  
Vol 909 ◽  
pp. 73-79
Author(s):  
Jing Yu ◽  
Yan Chuan Liu

The detour effect and Joule heating of electropulsing is employed on crack arrest. With respect to Inconel 625 alloy, the relationship between discharge parameters and the area of fusion zone, microstructure around the crack tip and mechanical properties are studied. The experimental results indicate that the area of molten hole is directly proportional to the electric energy input. The microstructure ahead of the crack tip is refined and uniform with the increase of electric energy input. The optimum discharge parameter range, which contributes to the improvement of comprehensive mechanical properties, can be obtained.

Author(s):  
German Cota-Sanchez ◽  
Lin Xiao

Abstract Inconel 625 is considered one of the candidate materials for reactor fuel cladding in the Canadian supercritical water reactor (SCWR) design. Gas tungsten arc welding (GTAW) is being evaluated as a joining technique for SCWR fuel cladding since this method is widely used to join components in the power and nuclear industry. During the GTAW process, the welding thermal cycle produces different types of microstructures in both the heat-affected zone (HAZ) and fusion zone (FZ) that affect the material's mechanical properties. A series of welding experiments at various weld conditions were performed using an automatic GTAW orbital process on Inconel 625 alloy tubing. Simple analytical heat conduction and grain growth models were developed to predict weld temperature profiles and metallurgical transformations. Weld characterization included mechanical tests, optical microscopy, scanning electron microscopy - energy dispersive spectroscopy (SEM-EDS) elemental analysis, and microhardness measurements. Weld microstructural characterization revealed that a characteristic dendritic structure was formed in the FZ, while the HAZ exhibited larger equiaxed grains than those found in the base material. SEM-EDS analysis showed no distinct alloying element segregation in both the HAZ and FZ. Welds produced with heat inputs of about 3.00 kJ/cm3 presented similar mechanical properties as those observed in the base material. In these welds, grain growth was homogenously minimized in the FZ. It is concluded that the effective welding heat input control can optimize the weld microstructure and the weld mechanical properties in Inconel 625 tubing used as Canadian SCWR reactor fuel cladding.


Author(s):  
Dongdong Gu ◽  
Sainan Cao ◽  
Kaijie Lin

In this study, laser metal deposition (LMD) additive manufacturing was used to deposit the pure Inconel 625 alloy and the TiC/Inconel 625 composites with different starting sizes of TiC particles, respectively. The influence of the additive TiC particle and its original size on the constitutional phases, microstructural features, and mechanical properties of the LMD-processed parts was studied. The incorporation of TiC particles significantly changed the prominent texture of Ni–Cr matrix phase from (200) to (100). The bottom and side parts of each deposited track showed mostly the columnar dendrites, while the cellular dendrites were prevailing in the microstructure of the central zone of the deposited track. As the nano-TiC particles were added, more columnar dendrites were observed in the solidified molten pool. The incorporation of nano-TiC particles induced the formation of the significantly refined columnar dendrites with the secondary dendrite arms developed considerably well. With the micro-TiC particles added, the columnar dendrites were relatively coarsened and highly degenerated, with the secondary dendrite growth being entirely suppressed. The cellular dendrites were obviously refined by the additive TiC particles. When the nano-TiC particles were added to reinforce the Inconel 625, the significantly improved microhardness, tensile property, and wear property were obtained without sacrificing the ductility of the composites.


2009 ◽  
Vol 50 (10) ◽  
pp. 2498-2501 ◽  
Author(s):  
Kuk Hyun Song ◽  
Kazuhiro Nakata

2020 ◽  
Vol 994 ◽  
pp. 96-103
Author(s):  
Erika Hodúlová ◽  
Ingrid Kovaříková ◽  
Beáta Šimeková ◽  
Jozef Bárta ◽  
Martin Sahul ◽  
...  

Study of weld joints of nonferrous, Inconel 625 alloy sheets using a new generation disk laser as the green welding technology for the effective manufacturing were carried out, and the results are presented in this paper. Weld joints of the Inconel 625 alloy sheets 2,0 mm thick were welded by laser without an additional material at a flat position, using a high purity argon as the shielding gas. The influence of laser welding parameters on weld quality and mechanical properties of test joints was studied. The influence of welding speed and laser power to the joint quality was investigated. The study of quality and mechanical properties of the joints were determined by metallographic evaluation, tensile and hardness tests.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 46
Author(s):  
Chengxun Zhang ◽  
Zhijun Qiu ◽  
Hanliang Zhu ◽  
Zhiyang Wang ◽  
Ondrej Muránsky ◽  
...  

Relatively high heat input and heat accumulation are treated as critical challenges to affect the qualities and performances of components fabricated by wire arc additive manufacturing (WAAM). In this study, various heat inputs, namely 276, 552 and 828 J/mm, were performed to fabricate three thin-wall Inconel 625 structures by cold metal transfer (CMT)-based WAAM, respectively, and active interpass cooling was conducted to limit heat accumulation. The macrostructure, microstructure and mechanical properties of the produced components by CMT were investigated. It was found that the increased heat input can deteriorate surface roughness, and the size of dendrite arm spacing increases with increasing heat input, thus leading to the deterioration of mechanical properties. Lower heat input and application of active interpass cooling can be an effective method to refine microstructure and reduce anisotropy. This study enhances the understanding of interpass temperature control and the effectiveness of heat inputs for Inconel 625 alloy by WAAM. It also provides a valuable in situ process for microstructure and mechanical properties’ refinement of WAAM-fabricated alloys and the control of heat accumulation for the fabrication of large-sized structures for future practical applications.


Sign in / Sign up

Export Citation Format

Share Document