Polyamidine as a New-Style Coagulant Aid for Dye Wastewater Treatment and its Floc Characteristics

2018 ◽  
Vol 913 ◽  
pp. 930-940
Author(s):  
Mo Xi Xue ◽  
Bao Yu Gao ◽  
Xing Xu ◽  
Wen Song

Polyamidine (PA) is a novel high cation coagulant aid for water treatment. In the present study the structure, coagulation ability and floc characteristics (including coagulation kinetics, floc dimension, floc strength and floc recover ability) were discussed. As a dual-coagulation, polyamidine was combined with AlCl3and PAC to remove dispersed yellow from wastewater. The results showed that the polyamidine exhibited higher intrinsic viscosity and higher charge neutralization ability than cationic polyacrylamide (PAM). Atomic force microscopic (AFM) and transmission electronic microscopic (TEM) images showed a dendritic, stretched structure of PA. The dosage of PAC/PA and AlCl3/PA and pH were investigated and optimized. Under the optimum condition, the color removal efficiency reached 96% as the concentration of 14/0.2 mg/L for AlCl3/PA (PA was combined with AlCl3) at pH 6. Meanwhile, the highest decoloring efficiency (97%) was achieved in the process when PAC/PA (PA was combined with PAC) dosage was 18/0.6 mg/L at pH 6.0-8.0. The addition of polyamidine could improve the color removal efficiency, including increasing the zeta potential evidently and reducing the aluminum coagulants dosage as well. Compared with AlCl3/PA, PAC/PA which contained higher polymeric aluminum, exhibited a better coagulation ability to adapt a wide range of pH. However, when PAC/PA and AlCl3/PA expressed the same removal efficiency, AlCl3/PA showed a less coagulant dosage in raw dye wastewater pH. With PA dosages increased, the floc of AlCl3/PA showed a gradually adding strength and recovery ability, but in PAC/PA system the tendency was unclear. In PAC/PA system, PA dosage increase only improved floc density.

Author(s):  
Bukola M. ADESANMI Yung-Tse HUNG and Howard H. PAUL

The interference of synthetic dye in the water bodies and environment poses a risk to both human and environmental health. Due to the recalcitrant nature of dye and presence of many other pollutants in industrial wastewater, efficient method of treatment of industrial effluent is required to address the lingering problem over the years. To address this major concern, experimental was carried out on synthetic dye and flour wastewater treatment by coagulation-flocculation while varying operating parameters (dosage, concentration, coagulant type etc.). The effectiveness of coagulation-flocculation process for the removal of Naphthol Green B in a mixture of dye wastewater and flour wastewater at different concentrations (50 ppm, 100 ppm, 150 ppm, 200 ppm) was investigated. Using 3 coagulant (FeCl3, FeSO4 and Al2(SO4)3), color removal efficiency was also investigated. The effectiveness of the coagulation process was measured for transmittance and absorbance as indices using UV-Vis Spectrophotometer. Also, the total organic carbon (TOC) was measured. Transmittance and absorbance values of 99.6% and 0.001 respectively were achieved post treatment. Ferric Chloride and Aluminum Sulfate gave better results than Ferrous Sulfate which gave the poorest transmittance and absorbance values indicating reduced color removal efficiency. The results of this study revealed that coagulation process is an efficient preliminary treatment for appreciable suspended particles and color removal from dye wastewater. It also showed the impact of coagulant dosage, dye strength and combined wastewater samples on the removal efficiency and resulting effluent quality.


2013 ◽  
Vol 743-744 ◽  
pp. 665-668
Author(s):  
Ji Zhou Li ◽  
Xu Yin Yuan ◽  
Ming Tian ◽  
Hao Ran Ji ◽  
Wan Jiang

Five novel coagulants, DC-491, Fennofix K97, BWD-01, MD-03 and MD-04 were chosen to treat reactive brilliant red X-3B simulated wastewater by jar tests. The results showed that the decolorization efficiencies were all higher than 75% at initial pH 8.2 and temperature 20 after 20 minutes of reaction. Then, two typical coagulants, BWD-01 and MD-04 which had better performance were chosen to study the effect of dye removal of X-3B at different operating parameters, including coagulant dosage, pH, sedimentaion time and reaction temperature of simulated wastewater. Decolorization efficiency of MD-04 for X-3B solution was higher than 80% in pH range from 3 to 9, while for BWD-01, efficiency increased from 37.3% to 82.3% in this pH range. For both BWD-01 and MD-04, the color removal efficiency increased as the solution temperature increased and the maximum efficiency was over 94% at 40. Small changes in the color removal efficiency were observed after 1 hour sedimentation for both coagulants.


2014 ◽  
Vol 977 ◽  
pp. 270-273
Author(s):  
Ming Li ◽  
Yan Zhen Yu ◽  
Guang Yong Yan

A response surface methodology (RSM) was used for the determination of optimum coagulation process conditions for disperse navy blue dye wastewater treatment. The experimental design was Box-Behnken design (BBD) with three operational variables: coagulant dosage, pH value and settling time. The influence of these three independent variables on the chroma removal was evaluated using a second-order polynomial multiple regression model. Quadratic model was predicted for the response variable and the maximum model-predicted chroma removal efficiency was 95%. Based on surface and contour plots, the optimum conditions were obtained to be coagulant dosage of 70.98 mg/L, pH value of 7.46, and settling time of 15.80 min with the actual chroma removal efficiency as 93%.


2009 ◽  
Vol 4 (2) ◽  
Author(s):  
H. Nagare ◽  
T. Aso ◽  
S. Yoshida ◽  
K. Ebie

Focusing on the improvement of removal efficiency of humic substances by coagulation, coagulation-flocculation processes were applied not only once but more than twice to the water being treated, and the effect of repeated coagulation was evaluated in jar-tests. With more than the critical dosage of PACl (15 mg/l), approximately 30% of color removal was attained in typical one-pass treatment, whilst maximum 65% removal was achieved by repeating the coagulation twice. Repeating coagulation enhances the coagulation process to achieve higher color removal efficiency, and can reduce the coagulant dosage.


2011 ◽  
Vol 356-360 ◽  
pp. 2616-2619
Author(s):  
Li Yi Ye ◽  
Xiao Xuan Zhang ◽  
Ying Wu Yin ◽  
Song Tu ◽  
Yong Sha

The performance of activated carbon (AC) adsorption process for the treatment of a simulated wastewater of fuchsin basic dye was investigated. The experiment revealed that under the optimum adsorption conditions (initial concentration of wastewater 250 mg L-1of dye, temperature 25 °C and AC dosage 4 g L-1), the color removal efficiency was 98% after 360 min of adsorption. As for the further use of AC, the saturated AC was regenerated by heated 20 min at 600 °C in the atmosphere of N2. Efficiency of regeneration was 99% and the regeneration loss was less than 5%. It indicated that AC was effective in the decolorization of dye wastewater.


2012 ◽  
Vol 610-613 ◽  
pp. 1939-1942
Author(s):  
Ji Zhou Li ◽  
Xu Yin Yuan ◽  
Ming Tian ◽  
Hao Ran Ji ◽  
Wan Jiang

In this study, five novel flocculants, QTRY-02, DC-491, Fennofix K97, BWD-01 and MD-03 were chosen to treat Reactive Brilliant Blue KN-R simulated wastewater by jar tests. The effect of flocculant dosage, initial pH, solution temperature of simulated dye wastewater and sedimentaion time on the color removal was examined respectively. The maximum color removal efficiency of KN-R was over 82% after 20 minutes of sedimentation and the optimal dosage was 150mg/L for all flocculants. In the pH range from 3 to 11, small changes in the color removal efficiency for QTRY-02. While for BWD-01, the efficiency increased from 67.3% to 88.3%. For both QTRY-02 and MD-04, decolorization efficiency increased as the solution temperature increased from 10°C to 50°C and the same result appeared when prolonging the sedimentation time from 1 to 12 hours.


2013 ◽  
Vol 750-752 ◽  
pp. 1448-1451 ◽  
Author(s):  
Cui Zhen Sun ◽  
Xiao Rui Zhang ◽  
Zhi Bin Zhang ◽  
Yan Hao Zhang

A new polymer of epichlorohydrin-ethylenediamine was obtained by suspension polycondensation of ethylenediamine with epichlorohydrin. The color removal performance and mechanism of the polymer in the treatment of synthetic reactive dyes wastewater was investigated, and in comparison with polymeric aluminum ferric chloride (PAFC) and polydimethyldiallylammonium chloride (PDMDAAC). The results showed that epichlorohydrin-ethylenediamine achieved higher color removal efficiency, and its adsorption-bridging and electric neutralization ability playedimportant roles in the flocculation process.


2012 ◽  
Vol 1424 ◽  
Author(s):  
M. A. Mamun ◽  
A. H. Farha ◽  
Y. Ufuktepe ◽  
H. E. Elsayed-Ali ◽  
A. A. Elmustafa

ABSTRACTNanomechanical and structural properties of pulsed laser deposited niobium nitride thin films were investigated using X-ray diffraction, atomic force microscopy, and nanoindentation. NbN film reveals cubic δ-NbN structure with the corresponding diffraction peaks from the (111), (200), and (220) planes. The NbN thin films depict highly granular structure, with a wide range of grain sizes that range from 15-40 nm with an average surface roughness of 6 nm. The average modulus of the film is 420±60 GPa, whereas for the substrate the average modulus is 180 GPa, which is considered higher than the average modulus for Si reported in the literature due to pile-up. The hardness of the film increases from an average of 12 GPa for deep indents (Si substrate) measured using XP CSM and load control (LC) modes to an average of 25 GPa measured using the DCM II head in CSM and LC modules. The average hardness of the Si substrate is 12 GPa.


2018 ◽  
Vol 20 (4) ◽  
pp. 49-59 ◽  
Author(s):  
I.A. Obiora-Okafo ◽  
O.D. Onukwuli

Abstract The performance of Vigna unguiculata coagulant (VUC) for colour removal from acid dye was investigated in this study. The proximate, structure and morphology of the coagulant were investigated using standard official methods, Fourier-Transform Infrared (FTIR) spectrometer and scanning electron microscopy (SEM), respectively. Response surface methodology (RSM) using face-centred central composite design (FCCD) optimized four process variables including pH, coagulant dosage, dye concentration and time. The colour removal efficiency obtained from the optimization analysis was 99.26% at process conditions of pH 2, coagulant dosage 256.09 mg/l, dye concentration 16.7 mg/l and time 540 min. The verification experiments agreed with the predicted values having a standard error value of 1.96%. Overlay contour plot established optimum areas where the predicted response variable is in an acceptable range (≥ 70%) with respect to optimum conditions. The FCCD approach was appropriate for optimizing the process giving higher removal efficiency when compared to the main effect plots.


1999 ◽  
Vol 570 ◽  
Author(s):  
J. A. Venables ◽  
G. Haas ◽  
H. Brune ◽  
J.H. Harding

ABSTRACTNucleation and growth of metal clusters at defect sites is discussed in terms of rate equation models, which are applied to the cases of Pd and Ag on MgO(001) and NaCl(001) surfaces. Pd/MgO has been studied experimentally by variable temperature atomic force microscopy (AFM). The island density of Pd on Ar-cleaved surfaces was determined in-situ by AFM for a wide range of deposition temperature and flux, and stays constant over a remarkably wide range of parameters; for a particular flux, this plateau extends from 200 K ≤ T ≤ 600 K, but at higher temperatures the density decreases. The range of energies for defect trapping, adsorption, surface diffusion and pair binding are deduced, and compared with earlier data for Ag on NaCl, and with recent calculations for these metals on both NaCl and MgO


Sign in / Sign up

Export Citation Format

Share Document