scholarly journals Surge Driven Evolution of Schottky Barrier Height on 4H-SiC JBS Diodes

2018 ◽  
Vol 924 ◽  
pp. 593-596 ◽  
Author(s):  
Besar Asllani ◽  
Jean Baptiste Fonder ◽  
Pascal Bevilacqua ◽  
Dominique Planson ◽  
Luong Viet Phung ◽  
...  

In this paper we will present the results of repetitive surge stress carried out on six 3.3 kV-5A Ti/Ni 4H-SiC JBS diodes. Repetitive current peaks between 10 A and 24 A have been applied and some diodes were able to endure 100,000 cycles while others failed before. The causes of failure have not been determined but a correlation between peak surge current and physical parameters evolution rate has been proven. Simulations show that contact temperature during surge can reach 300 °C, which is very close to Schottky contact annealing temperatures.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1794
Author(s):  
Xuefei Liu ◽  
Zhaocai Zhang ◽  
Bing Lv ◽  
Zhao Ding ◽  
Zijiang Luo

Graphene-based van der Waals (vdW) heterojunction plays an important role in next-generation optoelectronics, nanoelectronics, and spintronics devices. The tunability of the Schottky barrier height (SBH) is beneficial for improving device performance, especially for the contact resistance. Herein, we investigated the electronic structure and interfacial characteristics of the graphene/AlN interface based on density functional theory. The results show that the intrinsic electronic properties of graphene changed slightly after contact. In contrast, the valence band maximum of AlN changed significantly due to the hybridization of Cp and Np orbital electrons. The Bader charge analysis showed that the electrons would transfer from AlN to graphene, implying that graphene would induce acceptor states. Additionally, the Schottky contact nature can be effectively tuned by the external electric field, and it will be tuned from the p-type into n-type once the electric field is larger than about 0.5 V/Å. Furthermore, the optical absorption of graphene/AlN is enhanced after contact. Our findings imply that the SBH is controllable, which is highly desirable in nano-electronic devices.


1998 ◽  
Vol 512 ◽  
Author(s):  
W. Lu ◽  
D. T. Shi ◽  
W. E. Collins ◽  
H. Chen ◽  
A. Burger

ABSTRACTPd/SiC has been used as a high temperature hydrocarbon and hydrogen gas sensor in environmental and aeronautical applications. In this work, the relationships between diffusion, reaction, and interfacial chemical composition with electrical properties for Pd ultra-thin films on 6H-SiC (∼< 30Å) are studied at different annealing temperatures.Ultra-thin film Pd on 6H-SiC has been prepared by the RF sputtering method. The Schottky barrier heights are measured by XPS for an unannealed sample and samples annealed from 100°C to 400°C for 30 minutes, respectively. No significant change in the Schottky barrier height of the Pd/SiC contact was found in the temperature range. The morphology from UHV-STM and AFM show that the unannealed Pd thin film had good uniformity across the SiC substrate, and the Pd has dispersed, and then partially aggregated into rounded shaped precipitates with increasing annealing temperatures. At 400°C, all Pd metal has reacted and formed to silicides. From XPS, Pd2Si was found on the surface after annealing, and almost all Pd has reacted to become Pd2Si after annealing at 400°C. No other silicide was found. The intensity of Pd on XPS decreases enormously at 400°C. This is explained if Pd has diffused into SiC. The Pd diffusion and the formation of Pd silicides do not significantly affect the Schottky barrier height. The SiO2 was found at the top of surface after annealing, and increased in amount with increasing annealing temperature. The SiO2 formation was accelerated by the presence of Pd. Pd may play a role in absorbing oxygen, and activating Si from SiC to form SiO2.Key Words: Pd thin film, SiC, X-ray photoelectron spectroscopy, scanning tunneling microscopy, and atomic force microscopy.


1992 ◽  
Vol 262 ◽  
Author(s):  
Kai Zhang ◽  
D. L. Miller

ABSTRACTThe effect of LT GaAs on the effective barrier height of the epitaxial Al/GaAs Schottky contact was investigated for the first time by inserting a thin LT GaAs layer (50 ∼ 500Å) between the in situ deposited Al film and conventional MBE GaAs epitaxial layer. The activation energy plot of saturation current for the devices showed that the effective barrier height exhibits a dependence on LT GaAs thickness and reaches a saturated barrier height when the LT GaAs layer exceeds a critical thickness. Compared to the samples which had no LT GaAs layer, the effective Schottky barrier height was decreased from 0.79 eV to 0.35 eV for the n-GaAs samples, and increased from 0.55 eV to 0.72 eV for the p-GaAs samples. The Schottky barrier height modification achieved by LT GaAs is tentatively explained in the terms of a bulk Fermi level pinning model. The work described here suggests that LT GaAs can be used as a defect source with controlled thickness to study defect associated phenomena such as Schottky barrier height modification.


2010 ◽  
Vol 645-648 ◽  
pp. 669-672 ◽  
Author(s):  
Masashi Kato ◽  
H. Ono ◽  
Masaya Ichimura

We performed electrochemical deposition of ZnO on the surfaces of 4H-SiC epilayers and characterized Ni Schottky diodes fabricated on the same epilayers. We found correlation between positions where ZnO was deposited and positions where Schottky barrier height of Ni contacts is lower than of the rest of the contacts. Parts of the surface where ZnO was deposited were observed by AFM after removal of the ZnO layer, and we discussed the origin of the low Schottky barrier height from the AFM images.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


2011 ◽  
Vol 98 (16) ◽  
pp. 162111 ◽  
Author(s):  
J. Kováč ◽  
R. Šramatý ◽  
A. Chvála ◽  
H. Sibboni ◽  
E. Morvan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document