Study on the Influence of the Wastes from Cashew Industry on Environmentally Friendly Bricks

2018 ◽  
Vol 930 ◽  
pp. 120-124
Author(s):  
Francisca Pereira de Araújo ◽  
Josy Anteveli Osajima ◽  
João Sammy Nery de Souza ◽  
Marcelo Barbosa Furtini

Soil-cement bricks are sustainable and economically viable alternatives due to the possibility of residue utilization. CNSL (Cashew nut shell liquid ) is an example of residue from the cashew industry that can be reused in many applications. Therefore, the present work had as its objective to produce soil-cement bricks having CNSL as a constituent of the formulation. The samples were obtained from the mixture of pure CNSL, soil and cement (1:10). The soils used in the research were extracted from the south of the state and the mixture was pressed in a modular manual press. The samples were submitted to resistance and permeability tests and the results related to resistance and compression showed that the bricks presented an average of 2,3 MPa and were in accordance with what is suggested by NBR 8491/12. The presence of CNSL also altered the permeability of the material which was obtained. Hence, one may conclude that the presence of CNSL satisfactorily influences upon the properties of soil-cement bricks.

2007 ◽  
Vol 15 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Lubi C. Mary ◽  
Eby Thomas Thachil

2021 ◽  
pp. 009524432199040
Author(s):  
Isabela Pinto Ferreira ◽  
Alex da Silva Sirqueira ◽  
Taiane Andre dos Santos ◽  
Monica Feijo Naccache ◽  
Bluma Guenther Soares

Research on bio-plasticizers is a topic of strategic interest in polymer blends. A bio-plasticizer, cashew nut shell liquid (CNSL), was studied in blends of ethylene-vinyl acetate copolymer (EVA) and styrene-butadiene-styrene copolymer (SBS). In the literature does not report the addition of plasticizers to SBS/EVA blend. Statistical analyses showed that there was a significant difference in mechanical properties (tension at break, hardness and elongation at break) vs. the unplasticized blend. The minimum CNSL concentration required for a statistical difference was 10 phr. The Carreau-Yasuda rheological model was used to obtain rheological parameters in these blends. The plasticizing influence of CNSL was confirmed by rheology. The effects of CNSL on creep and recovery were evaluated for the SBS/EBA blends. Burger´s model explained well SBS/EVA creep compliance. Moreover, its parameters (Newtonian dashpots and Hookean springs) were evaluated as a function of the CNSL concentrations. The bio-plasticizer concentration influenced significant correlations among the rheological creep-recovery tests, thus enabling a considerable increase in the elastic phase. Experimental creep-recovery data and curve fit were in good agreement.


2016 ◽  
Vol 869 ◽  
pp. 112-115 ◽  
Author(s):  
Francisca Pereira de Araújo ◽  
Edson Cavalcanti Silva Filho ◽  
João Sammy Nery de Souza ◽  
Josy Anteveli Osajima ◽  
Marcelo Barbosa Furtini

Soil-cement bricks are good examples of environmentally friendly products. This brick is the combination of soil with compacted cement with no combustion in its production. In this work the physical chemical characteristics of the soil from Piaui for producing this material were investigated. Samples of the soil were collected in three potteries from the county of Bom Jesus and pH analysis were carried out, as well as the rate of organic matter, texture, particle density, limits of liquidity and plasticity rates. The results have shown that the soils have acid tones (pH 5,49 a 6,11), which can be neutralized by adding cement, and organic matter percentages up to 1%. The samples have shown predominantly clay-rich textures with adequate plasticity limits, however, values of liquidity limits and particle density above recommended. Altogether, these soils tend to present viability concerning soil-cement brick production, provided that corrections with additives are made in order to minimize this effect.


2021 ◽  
Author(s):  
Thanigaivelan V ◽  
Lavanya R

Abstract Emission from the DI diesel engine is series setback for environment viewpoint. Intended for that investigates for alternative biofuel is persuaded. The important hitches with the utilization of biofuels and their blends in DI diesel engines are higher emanations and inferior brake-thermal efficiency as associated to sole diesel fuel. In this effort, Cashew nut shell liquid (CNSL) biodiesel, hydrogen and ethanol (BHE) mixtures remained verified in a direct-injection diesel engine with single cylinder to examine the performance and discharge features of the engine. The ethanol remained supplemented 5%, 10% and 15% correspondingly through enhanced CNSL as well as hydrogen functioned twin fuel engine. The experiments done in a direct injection diesel engine with single-cylinder at steadystate conditions above the persistent RPM (1500RPM). Throughout the experiment, emissions of pollutants such as fuel consumption rate (SFC), hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and pressure of the fuel were also measured. cylinders. The experimental results show that, compared to diesel fuel, the braking heat of the biodiesel mixture is reduced by 26.79-24% and the BSFC diminutions with growing addition of ethanol from the CNSL hydrogen mixture. The BTE upsurges thru a rise in ethanol proportion with CNSL hydrogen mixtures. Finally, the optimum combination of ethanol with CNSL hydrogen blends led to the reduced levels of HC and CO emissions with trivial upsurge in exhaust gas temperature and NOx emissions. This paper reconnoiters the routine of artificial neural networks (ANN) to envisage recital, ignition and discharges effect.


Odontology ◽  
2021 ◽  
Author(s):  
Nayara de Oliveira Souza ◽  
Diana Araújo Cunha ◽  
Nara Sousa Rodrigues ◽  
Thayllan Teixeira Bezerra ◽  
Diego Lomonaco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document