Characterization of Kaolin Residues from the Jarí Valley Reservations Provided by Cadam S/A Company

2018 ◽  
Vol 930 ◽  
pp. 14-19
Author(s):  
Alexsandra Cristina Chaves ◽  
I.V. da Silva ◽  
A.L. da Silva ◽  
G.A. Neves ◽  
Danielle Nascimento Silva Oliveira

The ceramic industry is one of the most important productive chains of the State of Pará, generating both money and employment. Kaolin has many industrial applications and new uses are constantly surveyed. Although the extraction and processing of kaolin contribute to the economy growth, the activity also provokes serious environmental issues. Being aware of the environmental problem caused by the inadequate decomposition of kaolin residues from the beneficiation process of these minerals, which pollute and attack the environment, this paper aims the chemical, physical and mineralogical characterization of the kaolin residue from the post-treatment disposal provided by CADAM S/A company. The main oxides in the residues were SiO2and Al2O3. In the X-ray diffraction analysis it was verified that the kaolin residue is basically formed by kaolinite and quartz, in the particle size analysis it was observed that the medium size of the particle was of 1,77 μm.

2015 ◽  
Vol 820 ◽  
pp. 65-70
Author(s):  
I.D.S. Pereira ◽  
V.N.F. Lisboa ◽  
I.A. Silva ◽  
J.M.R. Figueirêdo ◽  
G.A. Neves ◽  
...  

Bentonite exhibt a range of industrial applications moving millions of dollars on the market per year. Among several applications if highlights it is use for petroleum drilling fluids. Thus, this work aims to characterize physical, mineralogical and technologically, the bentonitics clays of Sossego County, Paraíba, Brazil. Mineralogical characterization of clays was done through the following techniques: particle size analysis by laser diffraction, thermogravimetric and differential thermal analysis, chemical analysis and x-ray diffraction. The clays were turned in by treatment with sodium in Na2CO3 and then determined whether the apparent viscosity, plastic and volume of filtrate of clay-water dispersions. The results showed that the samples are of polycationic, showing levels of MgO, CaO and K2O, similar to those from Boa Vista County, Paraíba, Brazil, and consist of clay mineral kaolinite, quartz and esmec. The clays showed rheological properties that indicate potential for use in drilling fluids.


Cerâmica ◽  
2006 ◽  
Vol 52 (324) ◽  
pp. 240-244 ◽  
Author(s):  
M. N. Freire ◽  
J. N. F. Holanda

In Brazil, the food industry generates every year huge amounts of avian eggshell waste, and a critical question is to find an adequate use for this waste. The aim of this work is to determine the chemical, mineralogical and physical characteristics of a nonprocessed avian eggshell waste sample, as well as to investigate its use in wall tile paste. The sample was analyzed regarding to chemical composition, X-ray diffraction, morphology, particle size analysis, density, organic matter, soluble salts, and thermal analysis. The results indicated that the eggshell waste sample rich in CaCO3 can be used as an alternative raw material in the production of wall tile materials.


Author(s):  
YULIANITA PRATIWI INDAH LESTARI ◽  
HERMAN SURYADI ◽  
MIRAJUNNISA ◽  
WIBOWO MANGUNWARDOYO ◽  
SUTRIYO ◽  
...  

Objective: This study aimed to increase the yield of microcrystalline cellulose (MCC) from kapok pericarpium alpha-cellulose produced by enzymatic hydrolysis using purified cellulase from Termites (Macrotermes gilvus) and to compare the characteristics with the reference product. Methods: In this research, MCC was prepared from kapok pericarpium powder through the chemical isolation process of alpha-cellulose, followed by enzymatic hydrolysis with purified cellulase from Macrotermes gilvus. The yield was improved by using purified cellulase in optimized temperature, pH, and hydrolysis time. Identification was carried out by using ZnCl and infrared spectrophotometry, followed by characterization of MCC include particle size analysis (PSA) and diffracto­gram pattern (X-Ray Diffraction). The results were compared with Avicel PH 101 as the reference product. Results: Purified cellulase from Macrotermes gilvus showed high cellulose activity. Cellulose in the concentration of 11.743 U/ml formed 49 mm clear zone area with cellulolytic index 7.16 that similar to the formed clear zone area of Trichoderma reesei (50 mm), the optimum hydrolysis condition was achieved at 50 °C, pH 6.0, in 2 h, which produced 80% yield of MCC. Produced MCC was analyzed with ZnCl and FTIR spectrum resulting in positive results, similar to reference. The results of the organoleptic test, particle size analysis, and diffracto­gram pattern (X-Ray Diffraction) showed crystalline characteristics of MCC is similar to the reference (Avicel PH 101). Conclusion: Cellulase Macrotermes gilvus yielded 80% MCC and higher enzymatic activity than Trichoderma reesei. Based on the organoleptic test, particle size analysis, and diffracto­gram pattern observation, MCC from kapok pericarpium has shown similar characteristics to reference (Avicel pH 101) and might be potential to be further developed.


Author(s):  
HERMAN SURYADI ◽  
YULIANITA PRATIWI INDAH LESTARI ◽  
MIRAJUNNISA ◽  
ARRY YANUAR

Objective: This study aimed to increase the yield of microcrystalline cellulose (MCC) made from water hyacinth ɑ-cellulose by enzymatic hydrolysis by using purified enzyme and to find it’s characteristics compared to the reference. Methods: In this research, MCC was prepared from water hyacinth powder through the chemical isolation process of ɑ-cellulose, followed by enzymatic hydrolysis with purified cellulase from Chaetomium globosum. The yield of MCC was improved by using purified enzyme and optimization of temperature, pH, and hydrolysis time. Identification was carried out by using ZnCl and infrared spectrophotometry, followed by characterization of MCC include particle size analysis (PSA) and diffracto­gram pattern (X-Ray Diffraction) compared to reference Avicel PH 101. Results: Purified enzyme from Chaetomium globosum has high activity with a clear zone area of 45 mm with cellulolytic index 6.5 that almost same as Trichoderma reesei (50 mm), with the cellulase enzyme activity of 6.691 U/ml. The optimum condition was at a temperature of 50⁰C and pH 6.0 with the hydrolysis time of 2 h, which produced 95% yield of MCC. Identification with ZnCl and FTIR spectrum showed positive results, similar to the reference. The results of organoleptic test, particle size analysis, and diffracto­gram pattern (X-Ray Diffraction) showed crystalline characteristic similar to reference (Avicel PH 101). Conclusion: Enzyme from Chaetomium globosum has a higher activity of cellulase than Trichoderma reesei with MCC obtained was 95%. Based on the comparison of the organoleptic test, particle size analysis, and diffracto­gram pattern, MCC from water hyacinth has a great potential which showed similar characteristic to reference (Avicel pH 101).


2012 ◽  
Vol 727-728 ◽  
pp. 681-685
Author(s):  
Andre Wilson da Cruz Reis ◽  
Marlice Cruz Martelli ◽  
Roberto de Freitas Neves

The development of technology for the application of enamels on pieces of red pottery, in the handicraft sector, is an alternative to improve the quality of the ceramic body forming a waterproof layer that serves as a protection when used for foods and also to add a decorative effect and increase commercial value. This work develops an enameling technique in the production conditions of the artisans in the village of Icoaraci-PA/Brazil. The characterization of raw materials was performed by X-ray fluorescence, X-ray diffraction, particle size analysis, Thermogravimetric and Differential Thermal Analysis. Steps for enamel preparation using commercial transparent frit and bottle glass, and the technique for applying the glaze and firing are presented. The results for the test pieces were very good with the application of transparent frit fired at 900 ° C for 3 hours.


NanoNEXT ◽  
2021 ◽  
pp. 7-12
Author(s):  
Gbadamosi Y.E ◽  
Alabi O.O ◽  
Ola-Omole O.O ◽  
Adetula Y.V

Manganese deposit reserves exist in Nigeria, which have potentials as raw materials for industrial applications such as batteries, steel and electrical appliances. The present level of exploitation of Manganese is very low and, in most cases, appropriate processing would be necessary to attain desirable qualities. This paper provides petrological, chemical and mineralogical characterization of manganese ore in Anka area of Zamfara state, Nigeria. A chip of about 1/8 of an inch and about 1 inch by 1 inch was cut from the lumps of Anka (Zamfara state) manganese sample using rock cutter, after which their surfaces were trimmed and the chip was mounted on a grinding machine to make the surface smooth. The samples were mounted on a slide and viewed using Leica Petrological Microscope. 500 g of the ore was weighed using digital weighing balance. The sample was crushed and ground until 80% passing of 250µm is achieved. The ground ore was blended homogenously before the analysis while for the ore microscopy study, true fraction representative of the manganese ore samples were prepared, polished mounts and characterized using Scanning Electron Microscope-energy dispersed X-ray (SEM/EDX). However, X-ray Fluorescence was used to determine the chemical composition while identification of the associate mineral phase was done using X-ray Diffraction. From the petrological analysis carried out on the crude samples reveals the presence of heavy mineral and segregation distribution of the mineral. The XRF results shows 77.81% MnO, 60.26% Mn, 10.9% Fe2O3, 4% Al2O3 while Spessartine (3MnO.Al2O3, 0.830), Silicon oxide (SiO2, 1.122), Quartz (SiO4, 0.728), Pyrolusite (MnO, 1.543), and Almandine (Fe3Al2SiO12, 1.583) were identified as the major phases in the ore.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2010 ◽  
Vol 61 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Y. F. He ◽  
F. R. Li ◽  
R. M. Wang ◽  
F. Y. Li ◽  
Y. Wang ◽  
...  

Xanthate was successfully grafted onto bentonite by a relatively simple solution reaction. The obtained xanthated bentonite (XBent) was characterized by FT-IR spectrophotometer, thermogravimetric analysis (TG), particle size analysis, x-ray diffraction (XRD) and scanning electron microscopy (SEM). XBent acting as a type of environmentally friendly adsorbent was applied to remove lead ions from aqueous solutions. The optimum conditions were as follows: [Pb2 + ] = 500 mg L−1, [XBent] = 2 g L−1, pH = 5.0; oscillating 60 min under 200 rpm at 25°C. The removal rate of lead was up to 99.9%. It was found that the lead(II) ions—XBent adsorption isotherm model fitted well to the Freundlich isotherm. The adsorption mechanism was also investigated by SEM and XRD, which concluded that lead ions were complexed or chelated with XBent. XBent appears to have potential to be used later in water treatment as a type of inorganic polymer reagent.


2012 ◽  
Vol 727-728 ◽  
pp. 1164-1169 ◽  
Author(s):  
Mônica Beatriz Thürmer ◽  
Rafaela Silveira Vieira ◽  
Juliana Machado Fernandes ◽  
Wilbur Trajano Guerin Coelho ◽  
Luis Alberto Santos

Calcium phosphate cements have bioactivity and osteoconductivity and can be molded and replace portions of bone tissue. The aim of this work was to study the obtainment of α-tricalcium phosphate, the main phase of calcium phosphate cement, by wet reaction from calcium nitrate and phosphoric acid. There are no reports about α-tricalcium phosphate obtained by this method. Two routes of chemical precipitation were evaluated and the use of two calcinations temperatures to obtain the phase of cement. The influence of calcination temperature on the mechanical properties of cement was evaluated. Cement samples were characterized by particle size analysis, X-ray diffraction, mechanical strength and scanning electron microscopy. The results demonstrate the strong influence of synthesis route on the crystalline phases of cement and the influence of concentration of reactants on the product of the reaction, as well as, on the mechanical properties of cement.


Author(s):  
Fredy Kurniawan ◽  
Rahmi Rahmi

SnO2 nanoparticles have been synthesized by high voltage electrolysis. Tin bare was used for anode and cathode. The effect of potentials and electrolyte were studied. The particles obtained after electrolysis was characterized using X-ray Diffraction (XRD). The diffractogram is in agreement with the standard diffraction pattern of SnO2 which is identified as tetragonal structure. The Fourier Transform Infrared (FTIR) spectrum indicates that there is a vibration of Sn–O asymmetric at 580 cm-1. The optimum potential for SnO2 nanoparticles synthesis is 60 V at 0.06 M HCl which shows the highest UV-Vis spectrum. The absorption peak of SnO2 nanoparticles by UV-Vis spectrophotometer appears at about 207 nm. The particle size analysis shows that the SnO2 nanoparticles obtained have the size distribution in a range of 25-150 nm with the highest volume at 83.11 nm. Copyright © 2017 BCREC Group. All rights reservedReceived: 15th November 2016; Revised: 26th February 2017; Accepted: 27th February 2017How to Cite: Rahmi, R., Kurniawan, F. (2017). Synthesis of SnO2 Nanoparticles by High Potential Electrolysis. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 281-286 (doi:10.9767/bcrec.12.2.773.281-286)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.773.281-286 


Sign in / Sign up

Export Citation Format

Share Document