Study of the Effect of Processing Cycles on the Thermophysical Properties of Polyether Ether Ketone

2018 ◽  
Vol 935 ◽  
pp. 40-44 ◽  
Author(s):  
Azamat A. Zhansitov ◽  
Albert S. Shabaev ◽  
K.T. Shakhmurzova ◽  
Zh.I. Kurdanova ◽  
Rustam M. Mamkhegov ◽  
...  

The effect of heating cycles of polyether ether ketone up to 420 °C on the thermophysical properties was studied by the method of differential-scanning calorimetry. It is shown that with each subsequent heating the glass transition temperature increases, while the melting and crystallization temperature decreases, which may indicate an increase in the molecular weight of the polymer due to the structuring processes. The main degradation products of polyether ether ketone in air at temperatures of 350-450 °C were determined by gas chromatography and thermal decomposition schemes were proposed.

2018 ◽  
Vol 935 ◽  
pp. 36-39 ◽  
Author(s):  
Azamat A. Zhansitov ◽  
Azamat L. Slonov ◽  
Arthur E. Baikaziev ◽  
Marina M. Murzakanova ◽  
S.Yu. Khashirova

Differential scanning calorimetry was used to study the temperatures and character of phase transitions of fibers based on polyether ether ketones. It is shown that in the production of fine fibers from polyether ether ketones, a predominantly amorphous structure is formed. Increasing the temperature to the crystallization temperature leads to an almost twofold increase in the degree of crystallinity. Lower molecular weight polyether ether ketone is characterized by a higher rate of crystallization and the formation of a more homogeneous crystalline structure.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Zhou ◽  
Li Ding ◽  
Yong Zhu ◽  
Bozhou Wang ◽  
Xiangzhi Li ◽  
...  

AbstractOrganic inner salt structures are ideal backbones for heat-resistant energetic materials and systematic studies towards the thermal properties of energetic organic inner salt structures are crucial to their applications. Herein, we report a comparative thermal research of two energetic organic inner salts with different tetraazapentalene backbones. Detailed thermal decomposition behaviors and kinetics were investigated through differential scanning calorimetry and thermogravimetric analysis (DSC-TG) methods, showing that the thermal stability of the inner salts is higher than most of the traditional heat-resistant energetic materials. Further studies towards the thermal decomposition mechanism were carried out through condensed-phase thermolysis/Fourier-transform infrared (in-situ FTIR) spectroscopy and the combination of differential scanning calorimetry-thermogravimetry-mass spectrometry-Fourier-transform infrared spectroscopy (DSC-TG-MS-FTIR) techniques. The experiment and calculation results prove that the arrangement of the inner salt backbones has great influence on the thermal decompositions of the corresponding energetic materials. The weak N4-N5 bond in “y-” pattern tetraazapentalene backbone lead to early decomposition process and the “z-” pattern tetraazapentalene backbone exhibits more concentrated decomposition behaviors.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrea Pucci ◽  
Letizia Moretto ◽  
Giacomo Ruggeri ◽  
Francesco Ciardelli

AbstractA new polyethylene-compatible terthiophene chromophore, 5”-thio-(3- butyl)nonyl-2,2’:5’,2”-terthiophene, with melting point lower than 0°C was prepared and used for linear polarizers based on ultra-high-molecular-weight polyethylene (UHMWPE). Differential scanning calorimetry and scanning electron microscopy indicate that the new chromophore is dispersed uniformly in films of UHMWPE obtained by casting from solution. The films show excellent dichroic properties (dichroic ratio 30) at rather low drawing ratio (≈ 20) . Moreover, qualitative agreement is observed with the Ward pseudo-affine deformation scheme.


1973 ◽  
Vol 26 (8) ◽  
pp. 1791 ◽  
Author(s):  
RS Dickson ◽  
LJ Michel

The thermal decomposition of Co2(CO)6(PhC2Ph) has been investigated in detail. Differential scanning calorimetry was used to determine the most suitable temperature range for the study. At 180�, Co2(CO)6(PhC2Ph) decomposes to form cobalt, carbon monoxide, tetraphenylcyclopentadienone, hexaphenylbenzene, and other organic compounds. Variation in the temperature, the time, and the solvent used for the degradation reaction causes significant changes in the yields of the organic products. An investigation of the effects of adding stoichiometric amounts of free alkyne, tetra-phenylcyclopentadienone, and hexaphenylbenzene has been initiated in an attempt to understand the degradation mechanism.


Sign in / Sign up

Export Citation Format

Share Document