The Effect of Nitrogen Bubbles on Microstructure of Natural Rubber Foams Produced by Bubbling Process

2019 ◽  
Vol 962 ◽  
pp. 91-95
Author(s):  
Kuntida Katkeaw ◽  
Benjaporn Nooklay ◽  
Rungrote Kokoo ◽  
Kalayanee Kooptarnond ◽  
Matthana Khangkhamano

Natural rubber latex foam (NRF) was produced using nitrogen bubbling process. The process involved flowing of nitrogen with a constant flow rate of 80 cc/min through a bubble column, filled with latex compound, to generate a high bubble-volume inside the column. Microstructure of the finished product was examined using a scanning electron microscope (SEM), in comparison with that of the purchased Dunlop foam. The results showed characteristic of the as-produced foam that they composed of spherical pores with a uniform interconnected-cell structures. On the other hand, the Dunlop foam exhibited non-spherical pores and non-uniform cell structure with broken cells.

2019 ◽  
Vol 962 ◽  
pp. 96-100 ◽  
Author(s):  
Sanit Sirikulchaikij ◽  
Benjaporn Nooklay ◽  
Rungrote Kokoo ◽  
Matthana Khangkhamano

Natural rubber foams are currently produced by the two well-known processes of Dunlop and Talalay. Dunlop process, however, requires a high-speed Hobart Mixer to generate a high bubble-volume, while Talalay is complexity and expensive technique. Here, a simple and inexpensive technique for rubber foam production was introduced. The process involved air flowing with a constant flow rate through a porous diffuser, firmly connected to the bubble column containing compound latex, to generate a high bubble-volume. Microstructure of the as-produced rubber foams was examined using a scanning electron microscope (SEM), in comparison with that of the purchased Dunlop foam. Spherical cell shape with a uniform interconnected-cell structure was gained from the bubbled foams, while fractured-cell structure was obtained from the Dunlop foam.


2009 ◽  
Vol 12 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Rondinelli Donizetti Herculano ◽  
Cecília Pereira Silva ◽  
Cibele Ereno ◽  
Sérgio Augusto Catanzaro Guimaraes ◽  
Angela Kinoshita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document